
Linguagem C
Diagnóstico e correcção de problemas

José Pedro Oliveira
(jpo@di.uminho.pt)

Grupo de Sistemas Distribuı́dos
Departamento de Informática

Escola de Engenharia
Universidade do Minho

Sistemas Operativos I
2006-2007

José Pedro Oliveira Linguagem C

Introdução

Conteúdo

1 Introdução
Arquitectura fı́sica
Linguagem de programação C
Análise estática de programas C
Compilador de C
Biblioteca Electric Fence
Valgrind

José Pedro Oliveira Linguagem C

Introdução

Introdução

Técnicas e ferramentas
Arquitectura fı́sica
Linguagem de programação
Análise estática de programas C
Compilador de C
Bibliotecas de apoio a debugging
Debuggers genéricos
Debuggers especializados

José Pedro Oliveira Linguagem C

Introdução Arquitectura fı́sica

Arquitectura fı́sica

Informação a ter em conta
Tamanho da palavra do processador
Endereçamento de memória

Processador com unidade de gestão de memória
Alinhamento

byte-order do processador
little-endian vs big-endian

sizeof(int) ! = sizeof(void *)

José Pedro Oliveira Linguagem C

Introdução Linguagem de programação C

Linguagem de programação C

Algumas funcionalidades e propriedades a explorar
Utilizar assert.h
Substituir

gets por fgets
strcpy por strncpy
strcat por strncat
sprintf por snprintf
. . .

Substituir
if (p == 0) por if (0 == p)

José Pedro Oliveira Linguagem C

Introdução Análise estática de programas C

Análise estática de programas C - splint

Utilização
$ splint +flag1 -flag2 ficheiro.c

Ficheiro de configuração: .splintrc

Mode s e l e c t i o n f l a g s
weak , standard (d e f a u l t) , checks , s t r i c t

+checks

Disp lay Flags

#+showscan
+showsummary
+ s t a t s

José Pedro Oliveira Linguagem C

Introdução Compilador de C

Compilador de C - gcc

Algumas opções úteis

-E - Executa apenas o passo de pré-processamento
-S - Gera o ficheiro assembly (.s)
-g - Gera informação de debugging

-Wall - Activa a grande maioria dos avisos
-Wextra - Activa ainda mais avisos
-Werror - Os avisos passam a ser considerados erros

-On - Nı́vel de optimização (por omissão: -O0)
-Wp,-D FORTIFY SOURCE=n - detecção de buffer overflows

José Pedro Oliveira Linguagem C

Introdução Compilador de C

Compilador de C - gcc

Exemplos
gcc -E ...
gcc -S ...
gcc -Wall -Wextra ...
gcc -Wall -Wextra -std=c99 ...
gcc -Wall -Wextra -std=c99 -O0 -g ...
gcc -O2 -D FORTIFY SOURCE=2 ...
gcc -Wall -Wextra -Werror -O2 -Wp,-D FORTIFY SOURCE=2 ...
gcc -Wall -Wextra -g -lefence ...

gcc -Wall -Wextra -g -fmudflap -lmudflap ...

José Pedro Oliveira Linguagem C

Introdução Compilador de C

Fortify Source

FORTIFY SOURCE
FORTIFY SOURCE é uma caracterı́stica adquirida pelo gcc e
pela glibc que permite detectar e prevenir um subconjunto de
buffers overflows.

Mecânica
Há diversas situações em que o compilador consegue saber
qual a dimensão de um buffer (alocado estaticamente ou
alocado dinamicamente via malloc). Com este conhecimento,
diversas funções que sobre ele irão operar podem garantir a
não existência de buffer overflows.

José Pedro Oliveira Linguagem C

Introdução Compilador de C

Fortify Source: exemplo 1

exemplo1.c - detecção: durante a compilação e a execução

1 #include <s t r i n g . h>
2
3 i n t main (void)
4 {
5 char s t r [4] ;
6
7 s t r cpy (s t r , ” 1234 ”) ;
8
9 return 0;

10 }

José Pedro Oliveira Linguagem C

Introdução Compilador de C

Fortify Source: exemplo 1

$ gcc -O2 -Wp,-D FORTIFY SOURCE=2 exemplo1.c

exemplo1 . c : In f u n c t i o n ’ main ’ :
exemplo1 . c : 7 : warning : c a l l to b u i l t i n s t r c p y c h k w i l l \

always over f low d e s t i n a t i o n b u f f e r

$./a.out

∗∗∗ b u f f e r over f low detected ∗∗∗ : . / a . out terminated
======= Backtrace : =========
/ l i b / l i b c . so . 6 (c h k f a i l +0x41) [0 xa6ec45]
/ l i b / l i b c . so . 6 (s t r c p y c h k +0x3f) [0 xa6e2d7]
. / a . out [0 x80483bc]
/ l i b / l i b c . so . 6 (l i b c s t a r t m a i n +0xdf) [0 x9a5d5f]
. / a . out [0 x804831d]
======= Memory map: ========
00973000−0098d000 r−xp 00000000 03:09 972530 / l i b / ld −2.3.5. so
0098d000−0098e000 r−xp 00019000 03:09 972530 / l i b / ld −2.3.5. so
. . .

José Pedro Oliveira Linguagem C

Introdução Compilador de C

Fortify Source: exemplo 2

exemplo2.c - detecção: durante a execução

1 #include <s t r i n g . h>
2
3 i n t main (i n t a t t r i b u t e ((unused)) argc , char ∗argv [])
4 {
5 char s t r [4] ;
6
7 s t r cpy (s t r , argv [1]) ;
8
9 return 0;

10 }

José Pedro Oliveira Linguagem C

Introdução Compilador de C

Fortify Source: exemplo 2

$ gcc -O2 -Wp,-D FORTIFY SOURCE=2 exemplo2.c
$./a.out ok
$./a.out overflow

∗∗∗ b u f f e r over f low detected ∗∗∗ : . / a . out terminated
======= Backtrace : =========
/ l i b / l i b c . so . 6 (c h k f a i l +0x41) [0 xa6ec45]
/ l i b / l i b c . so . 6 (s t r c p y c h k +0x3f) [0 xa6e2d7]
. / a . out [0 x80483bd]
/ l i b / l i b c . so . 6 (l i b c s t a r t m a i n +0xdf) [0 x9a5d5f]
. / a . out [0 x804831d]
======= Memory map: ========
00973000−0098d000 r−xp 00000000 03:09 972530 / l i b / ld −2.3.5. so
0098d000−0098e000 r−xp 00019000 03:09 972530 / l i b / ld −2.3.5. so
. . .

José Pedro Oliveira Linguagem C

Introdução Compilador de C

Fortify Source: referências

Referências
Limiting buffer overflows with ExecShield
http:

//www.redhat.com/magazine/009jul05/features/execshield/

Object size checking to prevent (some) buffer
overflows
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html

José Pedro Oliveira Linguagem C

Introdução Biblioteca Electric Fence

Biblioteca Electric Fence

Biblioteca Electric Fence
Permite detectar dois erros comuns associados à alocação
dinâmica de memória:

ultrapassar os limites do bloco de memória alocado
aceder a memória já libertada com free()

Mecânica
Esta biblioteca utiliza o hardware de gestão de memória virtual
do computador para colocar uma página de memória
inacessivel imediatamente depois (ou antes) de cada bloco de
memória alocado. Quando o software aceder em modo de
leitura ou de escrita a uma das páginas inacessı́veis, o
hardware irá gerar um segmentation fault.

José Pedro Oliveira Linguagem C

Introdução Biblioteca Electric Fence

Biblioteca Electric Fence

Utilização
Linkar o programa com a biblioteca efence
Executar o programa modificando o comportamento da
biblioteca através das variáveis de ambiente:

EF ALIGNMENT
EF PROTECT BELOW
EF PROTECT FREE
EF ALLOW MALLOC 0
EF FILL

Permitir a geração de ficheiros core
$ ulimit -c unlimited

José Pedro Oliveira Linguagem C

Introdução Biblioteca Electric Fence

Biblioteca Electric Fence: exemplo

exemplo.c

1 #include <s t d l i b . h>
2 #include <s t r i n g . h>
3
4 i n t main (void)
5 {
6 char ∗ s t r = (char ∗) mal loc (5) ;
7
8 s t r cpy (s t r , ” 12345 ”) ;
9 ∗ (s t r − 1) = ’ \0 ’ ;

10 f ree (s t r) ;
11 ∗ s t r = ’ \0 ’ ;
12
13 return 0;
14 }

José Pedro Oliveira Linguagem C

Introdução Biblioteca Electric Fence

Biblioteca Electric Fence: exemplo

Compilar o programa

gcc -Wall -Wextra -O0 -g -lefence -o exemplo exemplo.c

Executar o programa (gerar core dumps)
1 ./exemplo
2 EF ALIGNMENT=1 ./exemplo
3 EF PROTECT BELOW=1 ./exemplo

Utilizar o debugger para localizar a fonte do problema
gdb exemplo core.pid

José Pedro Oliveira Linguagem C

Introdução Biblioteca Electric Fence

Biblioteca Electric Fence: exemplo

$./exemplo

E l e c t r i c Fence 2 .2 .0 Copyr ight (C) 1987−1999 Bruce Perens <bruce@perens . com>
Segmentation f a u l t (core dumped)

$ gdb exemplo core.3542

GNU gdb Red Hat Linux (6 .3 .0 .0 −1.134. f c5 rh)
. . .
Reading symbols from / l i b / ld−l i n u x . so . 2 . . . done .
Loaded symbols f o r / l i b / ld−l i n u x . so .2
#0 0x0804849a i n main () a t efence . c :11
11 ∗ s t r = ’\0 ’ ;
(gdb)

José Pedro Oliveira Linguagem C

Introdução Valgrind

Valgrind

Valgrind 3.2

Valgrind é um sistema flexı́vel para realizar o debugging e
profiling de executáveis X86/Linux, AMD64/Linux, PPC32/Linux
e PPC64/Linux. O sistema consiste num núcleo, que fornece
um processador sintético, e num conjunto de ferramentas que
permitem realizar tarefas especificas de debugging ou profiling.
Uma das principais ferramentas é a memcheck que permite
detectar problemas associados à gestão de memória de
programas.

Algumas ferramentas
cachegrind - simulador de cache
memcheck - verificador de memória (ferramenta por omissão)

José Pedro Oliveira Linguagem C

Introdução Valgrind

Valgrind

Opções de linha de comando

ficheiro .valgrindrc no directório de trabalho
ficheiro .valgrindrc na homedir do utilizador
variável de ambiente VALGRIND OPTS

Exemplo de algumas opções de linha de comando

-v - imprime informação adicional (verbose)
-q - modo silencioso; apenas imprime mensagens de

erro (quiet)
--tool=callgrind - selecionar ferramenta callgrind
--leak-check=yes - detectar perdas de memória (valor por

omissão: summary)

José Pedro Oliveira Linguagem C

Introdução Valgrind

Valgrind: exemplo

exemplo.c

1 #include <s t d l i b . h>
2
3 i n t main (void)
4 {
5 i n t ∗p = mal loc (10 ∗ sizeof (i n t)) ;
6
7 p [1 0] = 0 ;
8 ∗ (p − 1) = 0 ;
9

10 return 0;
11 }

José Pedro Oliveira Linguagem C

Introdução Valgrind

Valgrind: exemplo

Compilar o programa
(desactivando optimizações e activando informação de debugging)

gcc -Wall -Wextra -O0 -g -o exemplo exemplo.c

Executar o programa
valgrind exemplo
valgrind -q exemplo
valgrind --tool=memcheck exemplo
valgrind --tool=memcheck -v exemplo
valgrind --tool=memcheck --leak-checks=no exemplo
valgrind --tool=memcheck --leak-checks=yes exemplo

José Pedro Oliveira Linguagem C

Introdução Valgrind

Valgrind: exemplo

$ valgrind --tool=memcheck exemplo

. . .
==32764== I n v a l i d w r i t e o f s ize 4
==32764== at 0x80483AE : main (exemplo . c : 7)
==32764== Address 0x1B92F050 i s 0 bytes a f t e r a b lock o f s ize 40 a l l oc ’ d
==32764== at 0x1B909222 : mal loc (vg rep lace ma l loc . c :130)
==32764== by 0x80483A1 : main (exemplo . c : 5)
==32764==
==32764== I n v a l i d w r i t e o f s ize 4
==32764== at 0x80483BA : main (exemplo . c : 8)
==32764== Address 0x1B92F024 i s 4 bytes before a block o f s ize 40 a l l oc ’ d
==32764== at 0x1B909222 : mal loc (vg rep lace ma l loc . c :130)
==32764== by 0x80483A1 : main (exemplo . c : 5)
==32764==
==32764== ERROR SUMMARY: 2 e r r o r s from 2 contex ts (suppressed : 13 from 1)
==32764== mal loc / f r ee : i n use at e x i t : 40 bytes i n 1 blocks .
==32764== mal loc / f r ee : 1 a l l ocs , 0 f rees , 40 bytes a l l o c a t e d .
==32764== For counts o f detected er ro rs , rerun wi th : −v
==32764== searching f o r po in te r s to 1 not−f reed blocks .
==32764== checked 49152 bytes .
==32764==
==32764== LEAK SUMMARY:
==32764== d e f i n i t e l y l o s t : 40 bytes i n 1 blocks .
==32764== poss ib l y l o s t : 0 bytes i n 0 blocks .
==32764== s t i l l reachable : 0 bytes i n 0 blocks .
==32764== suppressed : 0 bytes i n 0 blocks .
. . .

José Pedro Oliveira Linguagem C

Introdução Valgrind

Valgrind: referências

Referências
Valgring homepage
http://valgrind.org/

The Valgrind Quick Start Guide
http://valgrind.org/docs/manual/quick-start.html

Valgrind User Manual
http://valgrind.org/docs/manual/manual.html

José Pedro Oliveira Linguagem C

Overflows

Conteúdo

2 Overflows
Alocação estática de memória
Alocação dinâmica de memória

3 Outros problemas

José Pedro Oliveira Linguagem C

Overflows Alocação estática de memória

Overflow de buffers estáticos

Experimentar
Utilizar o splint
Activar avisos do gcc
Compilar com a opção FORTIFY SOURCE
Corrigir o programa

José Pedro Oliveira Linguagem C

Overflows Alocação estática de memória

Exemplo 1 - overflow de um buffer estático

estatico 1.c

1 #include <s t r i n g . h>
2
3 i n t main (void)
4 {
5 char s t r [4] ;
6
7 s t r cpy (s t r , ” 1234 ”) ;
8
9 return 0;

10 }

José Pedro Oliveira Linguagem C

Overflows Alocação estática de memória

Exemplo 2 - overflow de um buffer estático

estatico 2.c

1 #include <s t r i n g . h>
2
3 i n t main (void)
4 {
5 char s t r [4] = ”N: ” ;
6
7 s t r c a t (s t r , ” 01 ”) ;
8
9 return 0;

10 }

José Pedro Oliveira Linguagem C

Overflows Alocação estática de memória

Exemplo 3 - overflow de um buffer estático

estatico 3.c

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3
4 i n t main (void)
5 {
6 char s t r [4] = ”N” ;
7
8 s p r i n t f (s t r , ”%s:%d\n ” , s t r , 1) ;
9

10 / / p r i n t f (” S t r i n g = <%s>\n ” , s t r) ;
11
12 return 0;
13 }

José Pedro Oliveira Linguagem C

Overflows Alocação estática de memória

Exemplo 4 - overflow de um buffer estático

estatico 4.c

1 #include <s t d l i b . h>
2
3 i n t main (void)
4 {
5 i n t i ;
6 i n t a [1 0] ;
7
8 for (i =0; i <=10; i ++) {
9 a [i] = 0 ;

10 }
11
12 return 0;
13 }

José Pedro Oliveira Linguagem C

Overflows Alocação dinâmica de memória

Overflow de buffers alocados dinamicamente

Experimentar
Utilizar o splint
Activar avisos do gcc
Compilar com a opção FORTIFY SOURCE
Utilizar a biblioteca Electric Fence
Correr o programa com o Valgrind
Corrigir o programa

José Pedro Oliveira Linguagem C

Overflows Alocação dinâmica de memória

Exemplo 1 - overflow de um buffer alocado dinamicamente

dinamico 1.c

1 #include <s t d l i b . h>
2 #include <s t r i n g . h>
3
4 i n t main (void)
5 {
6 char ∗ s t r = (char ∗) mal loc (4) ;
7
8 s t r cpy (s t r , ” 1234 ”) ;
9

10 f ree (s t r) ;
11
12 return 0;
13 }

José Pedro Oliveira Linguagem C

Overflows Alocação dinâmica de memória

Exemplo 2 - overflow de um buffer alocado dinamicamente

dinamico 2.c

1 #include <s t d l i b . h>
2
3 i n t main (void)
4 {
5 i n t i , ∗p = mal loc (10 ∗ sizeof (i n t)) ;
6
7 for (i =0; i <=10; i ++) {
8 p [i] = i ;
9 }

10
11 f ree (p) ;
12
13 return 0;

José Pedro Oliveira Linguagem C

Overflows Alocação dinâmica de memória

Exemplo 3 - overwrite de buffers

dinamico 3.c

1 #include <s t d l i b . h>
2
3 i n t main (void)
4 {
5 i n t i ;
6 i n t ∗p1 = mal loc (10 ∗ sizeof (i n t)) ;
7 i n t ∗p2 = mal loc (10 ∗ sizeof (i n t)) ;
8
9 for (i =0; i <10; i ++) { p2 [i] = 2 ; }

10 for (i =0; i <15; i ++) { p1 [i] = 1 ; }
11
12 return 0;
13 }

José Pedro Oliveira Linguagem C

Outros problemas

Conteúdo

2 Overflows
Alocação estática de memória
Alocação dinâmica de memória

3 Outros problemas

José Pedro Oliveira Linguagem C

Outros problemas

Outros problemas associados à alocação de memória

Experimentar
Utilizar o splint
Activar avisos do gcc
Compilar com a opção FORTIFY SOURCE
Utilizar a biblioteca Electric Fence
Correr o programa com o Valgrind
Corrigir o programa

José Pedro Oliveira Linguagem C

Outros problemas

Exemplo 1 - problema associado à alocação de memória

memoria 1.c

1 #include <s t d l i b . h>
2
3 s t a t i c void f (void) {
4 i n t ∗p1 = NULL ;
5
6 p1 = (i n t ∗) mal loc (sizeof (i n t)) ;
7 ∗p1 = 0;
8 }
9

10 i n t main (void) {
11 f () ;
12 return 0;
13 }

José Pedro Oliveira Linguagem C

Outros problemas

Exemplo 2 - problema associado à alocação de memória

memoria 2.c

1 #include <s t d l i b . h>
2
3 s t a t i c void f (void) {
4 i n t ∗p1 = NULL ;
5
6 p1 = (i n t ∗) mal loc (sizeof (i n t)) ;
7 f r ee (p1) ;
8 ∗p1 = 0;
9 }

10
11 i n t main (void) {
12 f () ;
13 return 0;
14 }

José Pedro Oliveira Linguagem C

Outros problemas

Exemplo 3 - problema associado à alocação de memória

memoria 3.c

1 #include <s t d l i b . h>
2
3 s t a t i c void f (void) {
4 i n t ∗p1 = NULL ;
5
6 p1 = (i n t ∗) mal loc (sizeof (i n t)) ;
7 ∗p1 = 0;
8 f ree (p1) ;
9 f ree (p1) ;

10 }
11
12 i n t main (void) {
13 f () ;
14 return 0;
15 }

José Pedro Oliveira Linguagem C

Outros problemas

Exemplo 4 - problema associado à alocação de memória

memoria 4.c

1 #include <s t d l i b . h>
2
3 s t a t i c void f (void) {
4 i n t ∗p1 = NULL, ∗p2 ;
5
6 p1 = (i n t ∗) mal loc (sizeof (i n t)) ;
7 ∗p2 = 0;
8 f ree (p1) ;
9 }

10
11 i n t main (void) {
12 f () ;
13 return 0;
14 }

José Pedro Oliveira Linguagem C

Outros problemas

Exemplo 5 - endereço de memória inválido

memoria 5.c

1 #include <s t d l i b . h>
2
3 i n t ∗ f (i n t i) {
4 i n t p [1 0] ;
5 p [i] = 1 ;
6 return &p [i] ;
7 }
8
9 i n t main (void) {

10 i n t ∗ p i = f (4) ;
11 i n t i = ∗ p i ;
12 return 0;
13 }

José Pedro Oliveira Linguagem C

Outros problemas

Exemplo 6 - endereço de memória inválido

memoria 6.c

1 #include <s t d l i b . h>
2
3 i n t ∗ f (i n t i) {
4 i n t ∗p = (i n t ∗) mal loc (10 ∗ sizeof (i n t)) ;
5 p [i] = 1 ;
6 f ree (p) ;
7 return &p [i] ;
8 }
9

10 i n t main (void) {
11 i n t ∗ p i = f (4) ;
12 i n t i = ∗ p i ;
13 return 0;
14 }

José Pedro Oliveira Linguagem C

