Contetido

Gestao de meméria @ Chamadas ao sistema

Generalidades ® brk

@ sbrk

José Pedro Oliveira
(jpo@di.uminho.pt)

Grupo de Sistemas Distribuidos
Departamento de Informatica
Escola de Engenharia
Universidade do Minho

Sistemas Operativos |
2006-2007

Gestao de meméria

Chamad a | sbik

Chamada ao sistema: brk Chamada ao sistema: sbrk

#include <unistd.h>
#include <unistd.h> void xsbrk (intptr_t increment);
int brk(void *end_data_segment) ;

Permite expandir o segmento de dados em increment bytes.
Altera o topo do segmento de dados para end_data_segment Invocando sbrk com um incremento de 0 bytes, permite obter
(desde que o valor seja razoavel). 0 enderego do topo do segmento de dados. Na realidade sbrk
nao é uma chamada ao sistema mas sim uma fungao wrapper.

Valor de retorno
sucesso - retorna o valor 0 Valor de retorno
insucesso - retorna o valor -1 e é atribuido o valor ENOMEM sucesso - retorna o endereco base da nova area
avariavel errno. insucesso - retorna o valor -1 e ¢ atribuido o valor ENOMEM
a variavel errno.

Gestao de meméria

Chamada ao sistema: sbrk - exemplo 1

Exemplo 1 - topo do segmento de dados

#include <unistd.h>
#include <stdio.h>

int main(void)
printf ("Topo do segmento de dados: %p\n”, sbrk(0));

return 0;

Contetido

@ Funcaes da biblioteca C
@ calloc e malloc
o free

Gestao de meméria

Chamad: brk

Chamada ao sistema: sbrk - exemplo 2

Exemplo 2 - expandir o segmento de dados

1 #include <unistd.h>

2 #include <stdio.h>

S int main(void)
printf ("Topo do segmento de dados : %p\n", sbrk(0));
printf ("Endereco base da nova area: %p\n", sbrk(256))
printf("Topo do segmento de dados : %p\n”, sbrk(0));

return 0;

Gestao de meméria

Fun abi

Funcdes da biblioteca C

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nmemb, size_t size);
void xrealloc(void *ptr, size_t size);

void free(void *ptr);

calloc e malloc:

Funcdes da biblioteca C: calloc e malloc

Fungdes da biblioteca C: free

Aloca size bytes e retorna o endereco (pointer) da meméria
alocada. A memoéria alocada néo é inicializada.

Liberta o bloco de meméria cujo endereco € dado pelo
parametro ptr. O enderego deve ter sido previamente obtido
” através da invocagao de malloc(), calloc() ou realloc().
Aloca um vector de nmemb elementos de size bytes cada e < 0 0 0
retorna o enderego (pointer) da memoria alocada. O bloco de
memoéria alocado é preenchido com o valor 0.

Gestao de meméria

brk/sbrk e malloc Contetido

1 #include <unistd.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4

int main(void)

int i;
printf ("Topo : %p\n”, sbrk(0));

ici
for (i = 0; i < 10; i++) { e Exercicio
printf ("Bloco: %p Topo: %p\n”,
malloc(32768), sbrk(0));

¥

return 0;

Gestao de meméria

Exercicio

Implementar um sistema de gestao de meméria dinamica que
permita substituir o da biblioteca C.

@ funcao void * myalloc(unsigned int nbytes)
e funcdo void myfree(void * ptr)
@ funcdo void mydump(void) (debug)

Gestao de meméria

Contetido

@ Referéncias

Gestao de meméria

Exercicio

Exercicio - consideragbes

Consideragoes
@ estrutura de controlo
@ campos (atencao ao espaco ocupado)
@ lista de blocos ocupados
@ lista de blocos livres

@ lista ndo-ordenada (tempo de pesquisa)

e lista ordenada por dimensao do bloco
o fragmentagdo de meméria

e dimensao do bloco minino

@ juntar blocos livres contiguos

Gestao de memoria

Referéncias

Referéncias
@ A Memory Allocator

Doug Lea
http://gee.cs.oswego.edu/dl/html/malloc. html
Unix And C/C++ Runtime Memory Management For
Programmers
http://users.actcom.co.il/~choo/lupg/tutorials/
unix-memory/unix-memory.html
Inside memory management
http:
//www-128 . ibm.com/developerworks/library/l-memory/
The C Programming Language
http://en.wikipedia.org/wiki/C_programming_language

> 8 |

Gestdo de meméria

Apéndice - Biblioteca glibc

Contetdo

@ Apéndice - Biblioteca glibc

Gestao de meméria

Linux e Glibc

ulimit -c unlimited
./glibcnull pointer
Segmentation fault (core dumped)

GNU gdb Red Hat Linux (6.3.0.0-1.134.fc5rh)

Core was generated by °./glibc_null_pointer

Program terminated with signal 11, Segmentation fault.

#0 0x0804836f in main () at glibc_null_pointer.c:7
7 wp = 1:

(gdb)

Gestao de meméria

Apéndice - Biblioteca glibc

Linux e Glibc

Exemplo 1 - null pointer
#include <stdlib.h>
int main(void)

{
int «p = NULL;

1
2
3
4
5
6
7
8
9 return 0;
0

}

56 P Gestao de meméria

Linux e Glibc

Exemplo 2 - libertar o mesmo bloco duas vezes
#include <stdlib.h>

int main(void)

{

int xp = (int %) malloc(5 * sizeof(int));

free (p);
free (p);

return 0;

1
2
3
4
5
6
7
8
9
0
1

}

Gestdo de meméria

Apéndice - Biblioteca glibc

Linux e Glibc

$./glibc_

double free or corruption (fasttop)

wax glibc detected «xs ./ glibc_double_free

Backtrace: =
/1ib/libc .50.6[0x43282268]
/1ib/libc .s0.6(__libc_free +0x78)[0x43285(61]
/glibc_double._free (0x80483ea]
/1ib/Iibc.50.6(--libc_start_main+0xdc) [0x432344e4]
I glibc_double_free [0x8048331]

M

[heap]
[vdso]
Iib/id

09147000 -09168000 rwxp 09147000 00:00 0
43201000—43202000 r—xp 43201000 00:00 0
43202000 43215000 r—xp 00000000 03:09 1102182

57103000-57104000 rw-p b7103000 00:00 O
b{98c000-bf9a1000 w—p {98000 00:00 O
Aborted (core dumped)

[stack]

0x09147008 +

Gestao de meméria

Linux e Glibc

invalidyg

++x glibc detected =+= ./glibc_free_invalid-pointer: free(): invalid pointer
Backirace: -

/1ib/libc .s0.6[0x43282a68]

/lib/libc .s0.6(-_libc_free+0x78)[0x4328516f]

glibc-free invalid_pointer [0x80483e2]

/lib/libc.s0.6(__libc_start_main+0xdc)[0x432344e4]

glibe_ires_invalid_point 1
Memory map

[heap]

{vdso]

T1ib /14 —2.4.50

rwxp 09612000 00:00 0
r—xp 43201000 00:00 0
T—xp 00000000 03:09 1102182

09612000—09633000
43201000 43202000
43202000 43215000

7138000-5739000 rw—p b7(38000 00:00 0
bifc0000-bffd6000 w—p bffc0000 00:00 0
Aborted (core dumped)

[stack]

0X0961200c »++

Gestao de meméria

Apéndice - Biblioteca glibc

Linux e Glibc

Exemplo 3 - libertar um bloco ndo alocado
#include <stdlib.h>

int main(void)
{
int xp = (int %) malloc(5 * sizeof(int));

free (p 1);

return

1

2
3
4
5
6
7
8
9
0

}

Gestao de meméria

Linux e Glibc - mtrace

Mecanismo para detectar perdas de meméria:

@ funcdo mtrace() - activar o tracing

@ funcdo muntrace() - desactivar o tracing

@ variavel de ambiente MALLOC_TRACE - nome do ficheiro
de trace a criar

@ utilitario mtrace (RPM glibc-utils) - processar dados
existentes no ficheiro de trace gerado durante a execugdo
do programa

Referéncia adicional
$ info libc "Allocation Debugging"

o Oliveir: Gestdo de meméria

Apéndice - Biblioteca glibc

Apéndice - Biblioteca glibc

Linux e Glibc - exemplo mtrace Linux e Glibc - exemplo

Exemplo 4 - malloc_trace.c

1 #include <stdlib.h> $ gcc all
2 #include <mcheck.h>
3

Wextra malloc trace.c

int main(void) Executar programa

$ MALLOC-TRACE=trace.txt ./a.out
int =« p1, * p2;

mtrace () Processar ficheiro gerado

p1 = (int) malloc(10 * sizeof(int)); $ mtrace ./a.out trace.txt
p2 = (int =) malloc(10 * sizeof(int));
free (p2);

Memory not freed:
muntrace () ;

. Address i caller
return 0;
0x08aeb378 .../memory/mtrace.c:9

Gestao de meméria

Gestao de meméria

