
Gestão de memória
Generalidades

José Pedro Oliveira
(jpo@di.uminho.pt)

Grupo de Sistemas Distribuı́dos
Departamento de Informática

Escola de Engenharia
Universidade do Minho

Sistemas Operativos I
2006-2007

José Pedro Oliveira Gestão de memória

Chamadas ao sistema

Conteúdo

1 Chamadas ao sistema
brk
sbrk

2 Funções da biblioteca C
calloc e malloc
free

3 Exercı́cio

4 Referências

5 Apêndice - Biblioteca glibc

José Pedro Oliveira Gestão de memória

Chamadas ao sistema brk

Chamada ao sistema: brk

Synopsis
#include <unistd.h>
int brk(void *end data segment);

Sumário
Altera o topo do segmento de dados para end data segment
(desde que o valor seja razoável).

Valor de retorno
sucesso - retorna o valor 0

insucesso - retorna o valor -1 e é atribuı́do o valor ENOMEM
à variável errno.

José Pedro Oliveira Gestão de memória

Chamadas ao sistema sbrk

Chamada ao sistema: sbrk

Synopsis
#include <unistd.h>
void *sbrk(intptr t increment);

Sumário
Permite expandir o segmento de dados em increment bytes.
Invocando sbrk com um incremento de 0 bytes, permite obter
o endereço do topo do segmento de dados. Na realidade sbrk
não é uma chamada ao sistema mas sim uma função wrapper.

Valor de retorno
sucesso - retorna o endereço base da nova área

insucesso - retorna o valor -1 e é atribuı́do o valor ENOMEM
à variável errno.

José Pedro Oliveira Gestão de memória

Chamadas ao sistema sbrk

Chamada ao sistema: sbrk - exemplo 1

Exemplo 1 - topo do segmento de dados

1 #include <un is td . h>
2 #include <s t d i o . h>
3
4 i n t main (void)
5 {
6 p r i n t f (” Topo do segmento de dados : %p\n ” , sbrk (0)) ;
7
8 return 0;
9 }

José Pedro Oliveira Gestão de memória

Chamadas ao sistema sbrk

Chamada ao sistema: sbrk - exemplo 2

Exemplo 2 - expandir o segmento de dados

1 #include <un is td . h>
2 #include <s t d i o . h>
3
4 i n t main (void)
5 {
6 p r i n t f (” Topo do segmento de dados : %p\n ” , sbrk (0)) ;
7
8 p r i n t f (” Endereco base da nova area : %p\n ” , sbrk (2 5 6)) ;
9

10 p r i n t f (” Topo do segmento de dados : %p\n ” , sbrk (0)) ;
11
12 return 0;
13 }

José Pedro Oliveira Gestão de memória

Funções da biblioteca C

Conteúdo

1 Chamadas ao sistema
brk
sbrk

2 Funções da biblioteca C
calloc e malloc
free

3 Exercı́cio

4 Referências

5 Apêndice - Biblioteca glibc

José Pedro Oliveira Gestão de memória

Funções da biblioteca C

Funções da biblioteca C

Synopsis
#include <stdlib.h>

void *malloc(size t size);

void *calloc(size t nmemb, size t size);

void *realloc(void *ptr, size t size);

void free(void *ptr);

José Pedro Oliveira Gestão de memória

Funções da biblioteca C calloc e malloc

Funções da biblioteca C: calloc e malloc

malloc()

Aloca size bytes e retorna o endereço (pointer) da memória
alocada. A memória alocada não é inicializada.

calloc()
Aloca um vector de nmemb elementos de size bytes cada e
retorna o endereço (pointer) da memória alocada. O bloco de
memória alocado é preenchido com o valor 0.

Valor de retorno
As funções calloc e malloc retornam NULL em caso de erro.

José Pedro Oliveira Gestão de memória

Funções da biblioteca C free

Funções da biblioteca C: free

free()

Liberta o bloco de memória cujo endereço é dado pelo
parâmetro ptr. O endereço deve ter sido previamente obtido
através da invocação de malloc(), calloc() ou realloc().

Valor de retorno
A função free não retorna nada.

José Pedro Oliveira Gestão de memória

Funções da biblioteca C free

brk/sbrk e malloc

Exemplo

1 #include <un is td . h>
2 #include <s t d i o . h>
3 #include <s t d l i b . h>
4
5 i n t main (void)
6 {
7 i n t i ;
8 p r i n t f (” Topo : %p\n ” , sbrk (0)) ;
9

10 for (i = 0 ; i < 10; i ++) {
11 p r i n t f (” Bloco : %p Topo : %p\n ” ,
12 mal loc (32768) , sbrk (0)) ;
13 }
14 return 0;
15 }

José Pedro Oliveira Gestão de memória

Exercı́cio

Conteúdo

1 Chamadas ao sistema
brk
sbrk

2 Funções da biblioteca C
calloc e malloc
free

3 Exercı́cio

4 Referências

5 Apêndice - Biblioteca glibc

José Pedro Oliveira Gestão de memória

Exercı́cio

Exercı́cio

Enunciado
Implementar um sistema de gestão de memória dinâmica que
permita substituir o da biblioteca C.

Interface
função void * myalloc(unsigned int nbytes)
função void myfree(void * ptr)
função void mydump(void) (debug)

José Pedro Oliveira Gestão de memória

Exercı́cio

Exercı́cio - considerações

Considerações
estrutura de controlo

campos (atenção ao espaço ocupado)

lista de blocos ocupados
lista de blocos livres

lista não-ordenada (tempo de pesquisa)
lista ordenada por dimensão do bloco

fragmentação de memória
dimensão do bloco mı́nino
juntar blocos livres contı́guos

José Pedro Oliveira Gestão de memória

Referências

Conteúdo

1 Chamadas ao sistema
brk
sbrk

2 Funções da biblioteca C
calloc e malloc
free

3 Exercı́cio

4 Referências

5 Apêndice - Biblioteca glibc

José Pedro Oliveira Gestão de memória

Referências

Referências

Referências

A Memory Allocator
Doug Lea
http://gee.cs.oswego.edu/dl/html/malloc.html

Unix And C/C++ Runtime Memory Management For
Programmers
http://users.actcom.co.il/∼choo/lupg/tutorials/

unix-memory/unix-memory.html

Inside memory management
http:

//www-128.ibm.com/developerworks/library/l-memory/

The C Programming Language
http://en.wikipedia.org/wiki/C programming language

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Conteúdo

1 Chamadas ao sistema
brk
sbrk

2 Funções da biblioteca C
calloc e malloc
free

3 Exercı́cio

4 Referências

5 Apêndice - Biblioteca glibc

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc

Exemplo 1 - null pointer

1 #include <s t d l i b . h>
2
3 i n t main (void)
4 {
5 i n t ∗p = NULL ;
6
7 ∗p = 1;
8
9 return 0;

10 }

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc

$./glibc null pointer

Segmentation fault

$ ulimit -c unlimited
$./glibc null pointer

Segmentation fault (core dumped)

$ gdb ./glibc null pointer core.12382

GNU gdb Red Hat Linux (6 .3 .0 .0−1.134. f c5 rh)
. . .
Core was generated by ‘ . / g l i b c n u l l p o i n t e r ’ .
Program terminated wi th s i g n a l 11 , Segmentation f a u l t .
. . .
#0 0x0804836f i n main () a t g l i b c n u l l p o i n t e r . c :7
7 ∗p = 1;
(gdb)

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc

Exemplo 2 - libertar o mesmo bloco duas vezes

1 #include <s t d l i b . h>
2
3 i n t main (void)
4 {
5 i n t ∗p = (i n t ∗) mal loc (5 ∗ sizeof (i n t)) ;
6
7 f ree (p) ;
8 f ree (p) ;
9

10 return 0;
11 }

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc

$./glibc double free

∗∗∗ g l i b c detected ∗∗∗ . / g l i b c d o u b l e f r e e : double f ree or c o r r u p t i o n (f a s t t o p) : 0x09f47008 ∗∗∗
======= Backtrace : =========
/ l i b / l i b c . so . 6 [0 x43282a68]
/ l i b / l i b c . so . 6 (l i b c f r e e +0x78) [0 x43285f6f]
. / g l i b c d o u b l e f r e e [0 x80483ea]
/ l i b / l i b c . so . 6 (l i b c s t a r t m a i n +0xdc) [0 x432344e4]
. / g l i b c d o u b l e f r e e [0 x8048331]
======= Memory map: ========
. . .
09f47000−09f68000 rwxp 09f47000 00:00 0 [heap]
43201000−43202000 r−xp 43201000 00:00 0 [vdso]
43202000−4321b000 r−xp 00000000 03:09 1102182 / l i b / ld−2.4.so
. . .
b7f03000−b7f04000 rw−p b7f03000 00:00 0
bf98c000−bf9a1000 rw−p bf98c000 00:00 0 [s tack]
Aborted (core dumped)

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc

Exemplo 3 - libertar um bloco não alocado

1 #include <s t d l i b . h>
2
3 i n t main (void)
4 {
5 i n t ∗p = (i n t ∗) mal loc (5 ∗ sizeof (i n t)) ;
6
7 f ree (p + 1) ;
8
9 return 0;

10 }

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc

$./glibc free invalid pointer

∗∗∗ g l i b c detected ∗∗∗ . / g l i b c f r e e i n v a l i d p o i n t e r : f r ee () : i n v a l i d p o i n t e r : 0x0961200c ∗∗∗
======= Backtrace : =========
/ l i b / l i b c . so . 6 [0 x43282a68]
/ l i b / l i b c . so . 6 (l i b c f r e e +0x78) [0 x43285f6f]
. / g l i b c f r e e i n v a l i d p o i n t e r [0 x80483e2]
/ l i b / l i b c . so . 6 (l i b c s t a r t m a i n +0xdc) [0 x432344e4]
. / g l i b c f r e e i n v a l i d p o i n t e r [0 x8048331]
======= Memory map: ========
. . .
09612000−09633000 rwxp 09612000 00:00 0 [heap]
43201000−43202000 r−xp 43201000 00:00 0 [vdso]
43202000−4321b000 r−xp 00000000 03:09 1102182 / l i b / ld−2.4.so
. . .
b7f38000−b7f39000 rw−p b7f38000 00:00 0
bffc0000−bffd6000 rw−p bf fc0000 00:00 0 [s tack]
Aborted (core dumped)

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc - mtrace

mtrace
Mecanismo para detectar perdas de memória:

função mtrace() - activar o tracing
função muntrace() - desactivar o tracing
variável de ambiente MALLOC TRACE - nome do ficheiro
de trace a criar
utilitário mtrace (RPM glibc-utils) - processar dados
existentes no ficheiro de trace gerado durante a execução
do programa

Referência adicional
$ info libc "Allocation Debugging"

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc - exemplo mtrace

Exemplo 4 - malloc trace.c

1 #include <s t d l i b . h>
2 #include <mcheck . h>
3
4 i n t main (void)
5 {
6 i n t ∗ p1 , ∗ p2 ;
7
8 mtrace () ;
9 p1 = (i n t ∗) mal loc (10 ∗ sizeof (i n t)) ;

10 p2 = (i n t ∗) mal loc (10 ∗ sizeof (i n t)) ;
11 f ree (p2) ;
12 muntrace () ;
13
14 return 0;
15 }

José Pedro Oliveira Gestão de memória

Apêndice - Biblioteca glibc

Linux e Glibc - exemplo mtrace

Compilar
$ gcc -Wall -Wextra -g malloc trace.c

Executar programa
$ MALLOC TRACE=trace.txt ./a.out

Processar ficheiro gerado
$ mtrace ./a.out trace.txt

Memory not freed:

Address Size Caller

0x08aeb378 0x28 at .../memory/mtrace.c:9

José Pedro Oliveira Gestão de memória

