
Processos
Aula 1 - Chamadas ao sistema

José Pedro Oliveira
(jpo@di.uminho.pt)

Grupo de Sistemas Distribuı́dos
Departamento de Informática

Escola de Engenharia
Universidade do Minho

Sistemas Operativos I
2006-2007

José Pedro Oliveira Processos

Programas e Processos

Conteúdo

1 Programas e Processos

2 Chamadas ao sistema
fork
exit

getpid, getppid
wait, waitpid

3 Referências

José Pedro Oliveira Processos

Programas e Processos

Programas e Processos

Programa

Um programa é um ficheiro executável que reside num
directório de um disco. Um programa é carregado para
memória e executado pelo kernel como resultado de uma das
seis funções exec.

Processo
Uma instância em execução de um programa é designada por
processo. Cada processo tem um identificador numérico único
designado por process ID. Este identificador é um número
inteiro não negativo.

José Pedro Oliveira Processos

Chamadas ao sistema

Conteúdo

1 Programas e Processos

2 Chamadas ao sistema
fork
exit

getpid, getppid
wait, waitpid

3 Referências

José Pedro Oliveira Processos

Chamadas ao sistema

Chamadas ao sistema

Chamadas ao sistema (system calls)
fork - create a child process
exit - terminate the current process

getpid - get current process identification
getppid - get parent process identification

wait - wait for process termination
waitpid - wait for process termination

José Pedro Oliveira Processos

Chamadas ao sistema fork

Chamada ao sistema: fork

Sumário
Criar um processo filho

Synopsis
#include <sys/types.h>
#include <unistd.h>

pid t fork(void);

Valor de retorno
Esta chamada ao sistema retorna duas vezes: uma no
contexto do processo original (pai) e outra no contexto do novo
processo (fillho). Em caso de erro só retorna uma vez (valor -1
no contexto do processo pai).

José Pedro Oliveira Processos

Chamadas ao sistema fork

Fork: uma invocação, dois retornos

processo

fork

1

pai
processo

filho

fork2

3 3

José Pedro Oliveira Processos

Chamadas ao sistema fork

Chamada ao sistema: fork - exemplo 1

Exemplo 1

1 #include <s t d i o . h>
2 #include <un is td . h>
3
4 i n t main (void)
5 {
6 p r i n t f (” Antes\n ”) ;
7
8 f o r k () ;
9

10 p r i n t f (” Depois\n ”) ;
11
12 return 0;
13 }

José Pedro Oliveira Processos

Chamadas ao sistema fork

Chamada ao sistema: fork - exemplo 2

Exemplo 2

1 #include <s t d i o . h>
2 #include <sys / types . h> /∗ p i d t ∗ /
3 #include <un is td . h>
4
5 i n t main (void)
6 {
7 p i d t p ;
8
9 p = f o r k () ;

10
11 p r i n t f (” p = %d\n ” , p) ;
12
13 return 0;
14 }

José Pedro Oliveira Processos

Chamadas ao sistema fork

Chamada ao sistema: fork - valor de retorno

Valor de retorno
-1 - Insucesso: o valor -1 é retornado no contexto do

processo pai e nenhum processo filho é criado.
0 - Sucesso: o valor 0 é retornado no contexto do

processo filho (novo processo).
> 0 - Sucesso: o PID do processo filho é retornado no

contexto do processo pai (processo original).

José Pedro Oliveira Processos

Chamadas ao sistema fork

Chamada ao sistema: fork - exemplo 3

Exemplo 3 (extracto)

1 p = f o r k () ;
2
3 i f (p == −1) {
4
5 /∗ Erro ∗ /
6
7 } else i f (p == 0) {
8
9 /∗ F i l ho ∗ /

10
11 } else i f (p > 0) {
12
13 /∗ Pai ∗ /
14
15 }

José Pedro Oliveira Processos

Chamadas ao sistema fork

Chamada ao sistema: fork - exemplo 4

Exemplo 4 (extracto)

1 p = f o r k () ;
2
3 switch (p) {
4 case −1 :
5 /∗ Erro ∗ /
6 break ;
7 case 0:
8 /∗ Codigo a executar no processo f i l h o ∗ /
9 break ;

10 defaul t :
11 /∗ Codigo a executar no processo pa i ∗ /
12 break ;
13 }

José Pedro Oliveira Processos

Chamadas ao sistema exit

Chamada ao sistema: exit

Sumário
Finalizar processo corrente

Synopsis
#include <unistd.h>

void exit(int status);

Valor de retorno
Esta chamada ao sistema termina imediatamente o processo
invocador (não retorna). O valor status (0..255) é retornado
ao processo pai, que o pode recolher através da chamada ao
sistema wait.

José Pedro Oliveira Processos

Chamadas ao sistema exit

Finalização de um processo

Finalização de um processo

Finalização normal
Retorno a partir de main
Invocar exit
Invocar exit ou Exit
Retorno da última thread
Invocar pthread exit a partir da última thread

Finalização anormal
Invocar abort
Recepção de um sinal
Resposta da última thread a um pedido de cancelamento

José Pedro Oliveira Processos

Chamadas ao sistema exit

Finalização de um processo

Notas
Quando a chamada ao sistema exit é invocada, o processo
corrente é terminado imediatamente:

todos os descritores de ficheiros abertos são fechados
todos os processos filhos passam a ter como pai o
processo init (pid = 1)
o sinal SIGCHLD é enviado ao processo pai

Chamada ao sistema exit vs função exit
Sempre que possı́vel utilizar a função exit da biblioteca de C
em detrimento da chamada ao sistema exit. Informação
adicional nas páginas man: man 2 exit e man 3 exit.

José Pedro Oliveira Processos

Chamadas ao sistema exit

Exemplos de métodos de terminação

Exemplo

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <un is td . h>
4
5 void f1 (void) {
6 . . .
7 e x i t (1) ; /∗ Normal ∗ /
8 }
9

10 void f2 (void) {
11 . . .
12 abor t () ; /∗ Anormal ∗ /
13 }
14
15 i n t main (void) {
16 f1 () ;
17 f2 () ;
18 return 0; /∗ Normal ∗ /
19 }

José Pedro Oliveira Processos

Chamadas ao sistema getpid, getppid

Chamadas ao sistema: getpid, getppid

Sumário
A chamada ao sistema getpid permite obter o identificador de
processo (PID) do processo corrente. A chamada so sistema
getppid permite obter o PID do pai do processo corrente.

Synopsis
#include <sys/types.h>
#include <unistd.h>

pid t getpid(void);
pid t getppid(void);

José Pedro Oliveira Processos

Chamadas ao sistema getpid, getppid

Chamadas ao sistema: getpid/getppid - exemplo 1

Exemplo 1

1 #include <s t d i o . h>
2 #include <sys / types . h> /∗ p i d t ∗ /
3 #include <un is td . h>
4
5 i n t main (void)
6 {
7 p i d t p = f o r k () ;
8
9 p r i n t f (” p = %5d pid = %5d ppid = %5d\n ” ,

10 p , ge tp id () , getpp id ()) ;
11
12 return 0;
13 }

José Pedro Oliveira Processos

Chamadas ao sistema getpid, getppid

Chamadas ao sistema: getpid/getppid - exemplo 1

Resultado 1
p = 0 pid = 4284 ppid = 4283
p = 4284 pid = 4283 ppid = 2849

Resultado 2 - processo pai termina antes da invocação de
getppid() no processo filho
p = 4307 pid = 4306 ppid = 2849
p = 0 pid = 4307 ppid = 1

Adopção de processos

Quando um processo fica orfão é imediatamente adoptado
pelo processo init (processo com o PID 1).

José Pedro Oliveira Processos

Chamadas ao sistema getpid, getppid

Chamadas ao sistema: getpid/getppid - exemplo 2

Exemplo 2

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <un is td . h>
4 #include <sys / types . h> /∗ p i d t ∗ /
5
6 i n t main (void)
7 {
8 p i d t p = f o r k () ;
9

10 i f (p == −1) { /∗ Erro ∗ /
11
12 pe r ro r (” f o r k ”) ; e x i t (EXIT FAILURE) ;
13
14 } else i f (p == 0) { /∗ F i l ho ∗ /
15
16 p r i n t f (” F i l h o : p = %5d pid = %5d ppid = %5d\n ” ,
17 p , ge tp id () , getpp id ()) ;
18
19 } else { /∗ Pai (p > 0) ∗ /
20
21 p r i n t f (” Pai : p = %5d pid = %5d ppid = %5d\n ” ,
22 p , ge tp id () , getpp id ()) ;
23
24 }
25
26 return 0;
27 }

José Pedro Oliveira Processos

Chamadas ao sistema wait, waitpid

Chamadas ao sistema: wait e waitpid

Sumário
Estas chamadas ao sistema permitem esperar pela mudança
de estado de um processo filho e obter informação sobre essa
mudança.

Synopsis
#include <sys/types.h>
#include <sys/wait.h>

pid t wait(int *status);
pid t waitpid(pid t pid, int *status,

int options);

José Pedro Oliveira Processos

Chamadas ao sistema wait, waitpid

Chamadas ao sistema: wait e waitpid

wait
A chamada ao sistema wait suspende o processo corrente até
que um dos seus processos filhos termine.

waitpid
A chamada ao sistema waitpid suspende o processo corrente
até que o filho especificado mude de estado. Por omissão só
espera que o filho em questão termine mas este
comportamento pode ser alterado através do argumento
options. Mudanças de estado:

o processo filho terminou
o processo filho foi congelado (stopped)
o processo filho foi descongelado (resumed)

José Pedro Oliveira Processos

Chamadas ao sistema wait, waitpid

Fork, Wait e Exit

fork

wait exit

pai filho

José Pedro Oliveira Processos

Chamadas ao sistema wait, waitpid

Chamada ao sistema: wait - exemplo 1

Exemplo 1 (extracto)

1 p = f o r k () ;
2
3 i f (p == −1) {
4 per ro r (” f o r k ”) ; e x i t (EXIT FAILURE) ;
5
6 } else i f (p == 0) {
7 p r i n t f (” F i l ho \n ”) ; s leep (3) ;
8
9 } else i f (p > 0) {

10 p r i n t f (” Pai\n ”) ;
11 wa i t (NULL) ; /∗ Esperar que o f i l h o termine ∗ /
12 p r i n t f (” Fim\n ”) ;
13
14 }

José Pedro Oliveira Processos

Chamadas ao sistema wait, waitpid

Chamada ao sistema: wait - exemplo 1

Exemplo 1

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <un is td . h>
4 #include <sys / types . h>
5 #include <sys / wa i t . h>
6
7 i n t main (void)
8 {
9 p i d t p = f o r k () ;

10
11 i f (p == −1) {
12 pe r ro r (” f o r k ”) ;
13 e x i t (EXIT FAILURE) ;
14 } else i f (p == 0) { /∗ F i l ho ∗ /
15 p r i n t f (” F i l ho\n ”) ;
16 sleep (3) ;
17 } else i f (p > 0) {
18 p r i n t f (” Pai\n ”) ;
19 wa i t (NULL) ; /∗ Esperar que o f i l h o termine ∗ /
20 p r i n t f (” Fim\n ”) ;
21 }
22
23 return 0;
24 }

José Pedro Oliveira Processos

Chamadas ao sistema wait, waitpid

Chamadas ao sistema: wait, waitpid - macros (1/2)

Relação entre wait() e waitpid()
wait(&status) == waitpid(-1, &status, 0)

Macros
WIFEXITED(status) - permite determinar se o processo filho

terminou normalmente.
WEXITSTATUS(status) - permite obter o código de saı́da do

processo filho (argumento da função exit). Esta
macro só deve ser invocada se WIFEXITED
returnar um valor verdadeiro.

José Pedro Oliveira Processos

Chamadas ao sistema wait, waitpid

Chamadas ao sistema: wait, waitpid - macros (2/2)

Macros

WIFSIGNALED(status) - permite determinar se o processo filho terminou
devido a um sinal não interceptado.

WTERMSIG(status) - permite obter o número do sinal que provocou a
finalização do processo filho. Esta macro só deve ser
invocada se WIFSIGNALED returnar um valor verdadeiro.

WCOREDUMP(status) - permite saber se foi gerado um ficheiro core.

WIFSTOPPED(status) - permite determinar se o processo filho que
provocou o retorno se encontra congelado (stopped).

WSTOPSIG(status) - permite obter o número do sinal que provocou o
congelamento do processo filho. Esta macro só deve ser
invocada se WIFSTOPPED returnar um valor verdadeiro.

WIFCONTINUED(status) - permite determinar se o processo filho foi
descongelado (resumed). Só aplicável para em kernels
2.6.10 ou mais recentes.

José Pedro Oliveira Processos

Chamadas ao sistema wait, waitpid

Chamada ao sistema: wait - exemplo 2

Extracto de código (processo pai)

1 q = wa i t (& s ta tus) ;
2
3 i f (q == −1) {
4 /∗ Erro ∗ /
5 } else i f (q > 0) {
6 /∗ q −> p id do processo que terminou ∗ /
7
8 i f (WIFEXITED(s ta tus)) {
9 /∗ Processo q terminou normalmente ∗ /

10 /∗ Codigo de saida = WEXITSTATUS(s ta tus) ∗ /
11 } else {
12 /∗ Processo q terminou anormalmente ∗ /
13 }
14 }

José Pedro Oliveira Processos

Referências

Conteúdo

1 Programas e Processos

2 Chamadas ao sistema
fork
exit

getpid, getppid
wait, waitpid

3 Referências

José Pedro Oliveira Processos

Referências

Referências

Bibliografia

Advanced Programming in the UNIX Environment, 2nd ed.
W. Richard Steven, Stephen A. Rago
http://www.apuebook.com/

Capı́tulo 1 - UNIX System Overview
Capı́tulo 7 - Process Environment
Capı́tulo 8 - Process Control

Advanced Programming in the UNIX Environment
W. Richard Steven
http://www.kohala.com/start/apue.html

Linux Programming by Example: The Fundamentals
Arnold Robbins
http://authors.phptr.com/robbins/

José Pedro Oliveira Processos

