Contetido

Processos
Aula 1 - Chamadas ao sistema o Programas e Processos

José Pedro Oliveira
(jpo@di.uminho.pt)

Grupo de Sistemas Distribuidos
Departamento de Informatica
Escola de Engenharia
Universidade do Minho

Sistemas Operativos |
2006-2007

Programas e Processos Contetido

Programa

Um programa é um ficheiro executavel que reside num
directério de um disco. Um programa € carregado para
memoria e executado pelo kernel como resultado de uma das e Chamadas ao sistema
seis fungdes exec. o fork

@ _exit

Processo @ getpid, getppid
Uma instancia em execugao de um programa é designada por o wait, waitpid
processo. Cada processo tem um identificador numérico tinico
designado por process ID. Este identificador € um nimero
inteiro ndo negativo.

Processos



Chamadas ao sistema

Chamadas ao sistema

Chamadas ao sistema (system calls)
fork - create a child process
_exit - terminate the current process
getpid - get current process identification
getppid - get parent process identification
wait - wait for process termination
waitpid - wait for process termination

fork

E
Fork: uma invocagéo, dois retornos

processo processo
pai filho

Processos

Chamad:

Chamada ao sistema: fork

Criar um processo filho

#include <sys/types.h>
#include <unistd.h>

pidt fork(void);

Valor de retorno

Esta chamada ao sistema retorna duas vezes: uma no
contexto do processo original (pai) e outra no contexto do novo
processo (fillho). Em caso de erro sé retorna uma vez (valor -1
no contexto do processo pai).

Processos

fork.

Chamada ao sistema: fork - exemplo 1

Exemplo 1

#include <stdio.h>
#include <unistd.h>

int main(void)
printf (”Antes\n");
fork ();
printf (”"Depois\n”);

return 0;

Processos



Chamadas ao sistema | fork’

Chamada ao sistema: fork - exemplo 2

Exemplo 2

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

/x pid_t =/
int main(void)

pid_t p;

p = fork();

printf("p = %d\n", p);

return 0;

eia | Processos
fork
xemplo 3
Exemplo 3 (extract

p = fork ();

/% Erro %/
if (p==0){
Filho «/

if (p>0) {

Pai =/

Processos

Chamad: fork

Chamada ao sistema: fork - valor de retorno

Valor de retorno
-1 - Insucesso: o valor -1 é retornado no contexto do
processo pai e nenhum processo filho é criado.
0 - Sucesso: o valor 0 é retornado no contexto do
processo filho (novo processo).
> 0 - Sucesso: o PID do processo filho é retornado no
contexto do processo pai (processo original).

Processos
fork.

Chamada ao sistema: fork - exemplo 4

Exemplo 4 (extracto)
p = fork();

switch (p) {
case —1 :
/% Erro x/
break ;
case 0:
/x Codigo a executar no processo filho x/
break ;
default:

/x Codigo a executar no processo pai */
break;

el

Processos.



Chamada ao sistema: _exit

#include <unistd.h>

void _exit (int status);

Valor de retorno
Esta chamada ao sistema termina imediatamente o processo
invocador (ndo retorna). O valor status (0..255) é retornado

ao processo pai, que o pode recolher através da chamada ao
sistema wait.

Processos
exit

Finalizacao de um processo

Notas
Quando a chamada ao sistema _exit ¢ invocada, o processo
corrente é terminado imediatamente:

@ todos os descritores de ficheiros abertos s&o fechados

@ todos os processos filhos passam a ter como pai o
processo init (pid = 1)
@ o sinal SIGCHLD ¢é enviado ao processo pai

Chamada ao sistema _exit vs fungédo exi

Sempre que possivel utilizar a fungdo exit da biblioteca de C
em detrimento da chamada ao sistema _exit. Informagao
adicional nas paginas man: man 2 _exit eman 3 exit.

o1 o |

Processos

Chamac

Finalizagao de um processo

Finalizagao de um processo
@ Finalizagdo normal
@ Retorno a partir de main
@ Invocar exit
e Invocar _exit ou Exit
@ Retorno da Gltima thread
@ Invocar pthread_exit a partir da dltima thread
@ Finalizagdo anormal
@ Invocar abort
@ Recepgao de um sinal
o Resposta da Ultima thread a um pedido de cancelamento

®

Exemplos de métodos de terminacdo

Exemplo
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4
5 void f1(void) {

exit(1); /« Normal =/

void f2(void) {

abort () /x Anormal */

int main(void) {
10
f2();
return 0; /+ Normal «/

Oliveira | Processos’



madas ao sistema | gelpid, getppid

Chamadas ao sistema: getpid, getppid

A chamada ao sistema getpid permite obter o identificador de
processo (PID) do processo corrente. A chamada so sistema
getppid permite obter o PID do pai do processo corrente.

#include <sys/types.h>
#include <unistd.h>

pid-t getpid(void);
pid-t getppid(void);

Proces:
S—
Chamadas ao sistema: getpid/getppid - exemplo 1

Resultado 1
p = 0 pid 4284 ppid
p = 4284 pid 4283 ppid =

Resultado 2 - processo pai termina antes da invocagéo de
getppid() no processo filho
4307 pid = 4306 ppid = 2849
0 pid = 4307 ppid = 1

Adopcéo de processos

Quando um processo fica orfao é imediatamente adoptado
pelo processo init (processo com o PID 1).

Processos

Chamad:

gelpid, getppid

Chamadas ao sistema: getpid/getppid - exemplo 1

Exemplo 1

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main(void)

pid_t p = fork();

printf ("p = %5d pid
p. getpid(),

return 0;

= %5d ppid
getppid ());

/%

pid_t =/

%5d\n”

Chamad

getppid

Cl a g€
Chamadas ao sistema: getpid/getppid - exemplo 2

Exemplo 2

#include <stdio h>
#include <stdlib.h>
#include <unistd >
#include <sys/types.h> /+ pid.t

int main(void)
{

pid-t p = fork();

-/

It (p == —1){ /e Erro +/

perror("fork”); exit (EXIT-FAILURE);

}else 1t (p == 0) { /« Filho

printf("Filho: p = %5d pid = %d ppid = %6d\n",

Pp. getpid (), getppid ());

) else { /x Pai (p>0)x/

printi("Pai %5d pid = %d ppid = %5d\n",
p. getp

) getppid ());
}

return 0;

Processos.




Chamadas ao sistema |/ wail, wailpid

Chamadas ao sistema: wait e waitpid

Estas chamadas ao sistema permitem esperar pela mudanca
de estado de um processo filho e obter informagao sobre essa
mudanca.

#include <sys/types.h>
#include <sys/wait.h>

pid-t wait (int =xstatus);
pidt waitpid(pid-t pid, int =status,
int options);

Fork, Wait e Exit

Processos

Chamad: walt, waitpid

Chamadas ao sistema: wait e waitpid

A chamada ao sistema wait suspende o processo corrente até
que um dos seus processos filhos termine.

A chamada ao sistema waitpid suspende o processo corrente
até que o filho especificado mude de estado. Por omissao s6
espera que o filho em questdo termine mas este
comportamento pode ser alterado através do argumento
options. Mudangas de estado:

@ o processo filho terminou

@ o processo filho foi congelado (stopped)

@ o processo filho foi descongelado (resumed)

O © |

Processos
wait, waitpid

Chamada ao S|stema wait - exemplo 1

Exemplo 1 (extracto)

p = fork ();

it (p==-1) {
perror("fork”); exit(EXIT_FAILURE);

} else if (p == 0) {
printf ("Filho\n"); sleep(3);

} else if (p > 0) {
printf ("Pai\n")
wait (NULL); /« Esperar que o filho termine
printf ("Fim\n");

—a

Processos



Chamadas ao sistema |/ wail, wailpid

Chamada ao sistema: wait - exemplo 1

Exemplo 1

#include <stdio .h>
stdlib.h>
unistd . h>
sys/types h>

#include <sys/wail.h>

int main(void)
¢ pid-t p = fork();

i o(p == 1) {
perror ("fork"):
exit (EXIT_FAILURE) ;

} else if (p==0) { /= Filho +/
printf (" Filho\n");
sleep (3);

} else if (p>0) {
printf (*Pai\n")
wait (N

/= Esperar que o filho termine =/
printf ("Fim\n")

return 0;

Processos

ema | wai, waitpid

Chamadas ao sistema: wait, waitpid - macros (2/2)

WIFSIGNALED(status) - permite determinar se o processo filho terminou
devido a um sinal nao interceptado.

WTERMSIG(status) - permite obter o nimero do sinal que provocou a
finalizagao do processo filho. Esta macro s6 deve ser
invocada se WIFSIGNALED returnar um valor verdadeiro.

WCOREDUMP(status) - permite saber se foi gerado um ficheiro core.

WIFSTOPPED(status) - permite determinar se o processo filho que
provocou o retorno se encontra congelado (stopped).

WSTOPSIG(status) - permite obter o nimero do sinal que provocou o
congelamento do processo filho. Esta macro s6 deve ser
invocada se WIFSTOPPED returnar um valor verdadeiro.

WIFCONTINUED(status) - permite determinar se o processo filho foi

descongelado (resumed). S6 aplicavel para em kernels
2.6.10 ou mais recentes.

e |

Processos

Chamac walt, waitpid

Chamadas ao sistema: wait, waitpid - macros (1/2)

Relagéo entre wait() e waitpid()

wait (&status) == waitpid(-1, &status, 0)

WIFEXITED(status) - permite determinar se o processo filho
terminou normalmente.

WEXITSTATUS (status) - permite obter o codigo de saida do
processo filho (argumento da fungéo exit). Esta
macro s6 deve ser invocada se WIFEXITED
returnar um valor verdadeiro.

Processos
wait, waitpid

Chamada ao sistema: wait - exemplo 2

Extracto de cédigo (processo pai
q = wait(&status);

it (q==-1) {
/x Erro x/
} else if (q> 0) {
/* q —> pid do processo que terminou x/

if (WIFEXITED(status)) {
/x Processo q terminou normalmente x/

/+ Codigo de saida = WEXITSTATUS(status) =/
} else {

/x Processo q terminou anormalmente =/
}

Oliveira | Processos’



Releréncias

Contetdo

e Referéncias

Referéncias

Bibliografia
@ Advanced Programming in the UNIX Environment, 2nd ed.
W. Richard Steven, Stephen A. Rago
http://www.apuebook .com/
o Capitulo 1 - UNIX System Overview
o Capitulo 7 - Process Environment
o Capitulo 8 - Process Control
@ Advanced Programming in the UNIX Environment
W. Richard Steven
http://www.kohala.com/start/apue.html
@ Linux Prog ing by The F
Arnold Robbins
http://authors.phptr.com/robbins/

edro Oliveira | Processos



