Leader Election in a Synchronous Ring

Paulo Sérgio Aimeida

Distributed Systems Group
Departamento de Informatica
Universidade do Minho

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring The Problem

Motivation: token ring networks

@ In a local area ring network a token circulates around;
@ Sometimes the token gets lost;

@ A procedure is needed to regenerate the token;

@ This amounts to electing a leader;

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring The Problem

The problem

@ Network graph:

e nnodes, 1 to n clockwise;
e symmetry and local knwoledege:

@ nodes do not know their or neighbor numbers;
@ distinguish clockwise and anti-clockwise neighbors.

e notation: operations mod n to facilitate;
@ Requirement:
e eventually, exactly one process outputs the decision leader;

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring The Problem

Versions of the problem

@ The other non-leader processes must also output non-leader;
@ The ring can be:
@ unidirectional;
@ bidirectional;
@ Number of processes n can be:
@ known;
@ unknown;
@ Processes can be:

@ identical;
o have totally ordered unique identifiers (UID);

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring Impossibility for identical processes

Impossibility for identical processes

Let A be a system of n > 1 processes in a bidirectional ring. If all n
processes are identical, then A does not solve the leader-election.

Proof.

Assume WLOG that we have one starting state. (A solution admiting
several starting states would have to work for any of those). We have,
therefore, a unique execution. By a trivial induction on r, the rounds
executed, we can see that all processes have identical state after any
number of rounds. Therefore, if any process outputs /eader, so must
the others, contradicting the uniqueness requirement. O

@ If all processes are identical, the problem cannot be solved!
@ Intuition: by symmetry, what one does, so do the others;

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring Impossibility for identical processes

Breaking symmetry

@ Impossibility follows from symmetry;
@ Must break symmetry; e.g. with unique UIDs;

@ Symmetry breaking is an important part of many problems in
distributed systems;

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

A basic algorithm — LCR

@ LCR algorithm (Le Lann, Chang, Roberts);

@ Uses comparisons on UIDs;

@ Assumes only unidirectional ring;

@ Does not rely on knowing the size of the ring;
@ Only the leader performs output;

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

LCR informally

@ Each process sends its UID to next;

@ If areceived UID is greater than self UID, it is relayed on;
o If it is smaller, it is discarded;

@ Ifitis equal, the process ouputs leader;

007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

LCR formally

@ Algorithm parameterized on process index (i) and UID (u);
@ Message alphabet M = U, the set of UIDs;

@ Process state, state;:

e send € MU null, initially u;
e status € {unknown, leader?}, output variable, initially unknown;

@ Message-generating function:
msg; ,((send, status), i + 1) = send,
@ State-transition function:

(null, status) if msg = null
(null, status) if msg < u
(msg, status) if msg > u
(null, leader) if msg =u

trans; ,((send, status), msg) =

g =
-
<G

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

Proof of correctness

@ Let m be the index of process with maximum UID up,;
@ Show two lemmas.

Process m ouputs leader in round n.

Processes i ## m never ouput leader.

LCR solves leader election.

007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

Proof of correctness - first lemma

Process m ouputs leader in round n.

@ For i # m, if after round r, send;_1 = upn, then in round r + 1,
send; = Up;

@ For0 < r < n-—1, after r rounds, sennm.r = Un;

@ Node before minringin m+n—1;

@ After round n— 1, sendpin_1 = Un;

@ Inround r, mreceives up, and outputs leader;

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

Proof of correctness - second lemma

Processes i = m never ouput leader.

@ A process i can only output /eader if it receives msg = uj;
@ A non-null message can only be some u;, from process j;

@ As UIDs are unique, msg would have to originate in i and travel
around the ring, including m;

@ But as u; < up, mdoes not relay msg, sending null instead;
@ Therefore, msg cannot arrive at i, and i cannot output /leader;

©?2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

Halting and non-leader outputs

@ LCR as presented does not halt;

@ Processes other than leader stay in unknown status;

@ Can be modified to halt and make others output other;

@ When leader outputs, sends halt message and halts;

@ When a process receives halt, passes it on and then halts;
@ Processes that receive halt can output other;

@ This transformation to halting and output in all processes is quite
general, and can be applied in many scenarios;

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

Halting and non-leader outputs; an improvement

@ other processes can output other as soon as they receive a UID
greater than own;

@ but they cannot halt immediately; they must keep on relaying;

Arriving at output can be sometimes much sooner than halting;
e but they are independent things;

e sometimes a premature halt, forgetting to keep on reacting, can
deadlock the rest of the system;

©?2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

Halting and non-leader outputs formally

Message alphabet: as before or {halt};
Process states: as before or halted,
Halting states: halted,

status € {unknown, leader, other};
Message-generating function as before;
State-transition function:

halted
(halt, status)
(null, status)
trans; ,((send, status), msg) =

hl(), msg) (null, status)
(msg, other)
(

halt, leader)

if send = halt
if msg = halt

if msg = null

if msg < u

if msg > u

if msg =u

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring A basic algorithm

Complexity

@ Time complexity:
@ nrounds until leader elected;
@ 2nrounds until last process halts;
@ And if processes know the size of the ring?

@ Communication complexity:

O(n?) messages in the worst case for both versions;
O(nlog n) messages in average;

Which configuration results in less messages? How many?

("]
o
o
@ Which configuration results in more messages? How many?

007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS — an algorithm with O(nlog n) communication complexity

@ HS algorithm (Hirshberg, Sinclair);

@ Uses comparisons on UIDs;

@ Assumes bidirectional ring;

@ Does not rely on knowing the size of the ring;

@ Only the leader performs output (can be overcome with
transformation);

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS informally

Processes operate in phases / =0,1,2,.. ;

In each phase, processes send token with UID in both directions;
Tokens in phase / intend to travel 2/ and turn back to sender;

If a received UID is greater than self UID, it is relayed on;

If it is smaller, it is discarded;

If it is equal, the process ouputs leader;

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS formally

@ Message alphabet: M = {out} x U x NU {in} x U;
@ Process state, state;:
e s— € MuU null, initially (out, u,1);
@ s+ € MU null, initially (out, u,1);
e 0 € {unknown, leader}, output variable, initially unknown;
e [: phase, initially 0;
@ Message-generating function:
s— ifj=i—-1

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS — state-transition function in imperative pesudo-code

s+ := null
s— :=null
if message from i-1 is (out, v, h):
case
v >uand h > 1: s+ := (out, v, h-1)
v >uand h =1: s- := (in, v)
v = u: o := leader
if message from i+l is (out, v, h):
case
v >uand h > 1: s- := (out, v, h-1)
v >uand h = 1: s+ := (in, v)
v = u: o := leader
if message from i-1 is (in, v) and v != u:
st := (in, v)
if message from i+l is (in, v) and v != u:
s— := (in, v)
if messages from i-1 and i+l are both (in, u):
1 :=1+1
s+ := (out, u, 271)
s— := (out, u, 271)

2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Problems with imperative description

@ Imperative style makes it unclear functional dependence and
difficult reason;
o Different places assign to the same variable;
@ Are those cases mutually exclusive?
@ Examples:
e what if messages (out, v, 3) and (out, w, 1) arrived at a node?
what if messages (out, v, 1) and (in, w) arrived at a node?
in both cases, one would have to proceed, the other turn around;
two different specifications for same outgoing message;
in imperative description, the last assignment wins;
@ should not happen; but won't it? should be proven;
@ Algorithm depends on some combinations of incoming
messages never occurring;

®© 6 6 ¢

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Alternative: functional description

@ As we need to describe functions ...
... why not adopt a functional style?

@ Pseudo-code with functional flavour;
@ Functions defined by cases, using pattern matching;

@ Functions can be partial:

e not all cases are covered,;

@ can make functions simpler;

@ a separate proof shows those cases never happen;

e proof would have to exist anyway, if correctness depends on it;

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS formally — state-transition function

trans; ,((s—, s+, 0,1), ((out, u, h), (out, u, h))) =
(null, null, leader, 1)
trans; ,((s—, s+, 0,1), ((in, u), (in,u))) =
);

(out, u,2'*1), (out,u,2*1), 0,1 + 1)

trans; ,((s—, s+, 0,1), (m—, m+)) when lasthop(m—, m+) =
(filter,(m-), filter,(m+), o,)

trans; ,((s—, s+, 0,1), (m— m+))

(filter,(m+), filter,(m—), 0,1)

lasthop((out, _, 1),) = true
lasthop(_, (out, _, 1)) = true
lasthop(_, .) = false

filter,((out, v, h)) when v < u = null
filter,((out, v,1)) = (in, v)
filter,((out, v, h)) = (out,v,h—1)
filter,(m) =

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS — correctness

@ Several steps in the proof;
@ Safety:

@ At most one process decides to become leader;
@ Termination:

@ Some process will decide to become leader;

007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS — correctness

Lemma

A process with UID u outputs leader when a message started at u
travels the whole ring and arrives back at u.

@ a process with UID v only decides leader when receiving a
message m = (out, u, .);
@ as all UIDs are different, the message started at u;

@ as the message is outgoing, it has not turned back and travelled
always in the same direction;

@ therefore, the message travelled the whole ring.

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS — correctness

At most one process can become leader: the one with the maximum
uID.

@ from the previous lemma, for a process wiht UID v to become
leader, it must receive a message (out, v, _) that travelled the
whole ring;

@ such message must have been subject to the filter, function for
every other process;

@ the only way for the message to arrive non-null is v to be greater
then all other UIDs.

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS — correctness

Lemma

Process p with maximum UID u decides leader in round
n+2 x> .2, with m the greatest integer such that 2™ < n.

y

@ messages (out, u,) started at p are always relayed; never
discarded;

@ for phases 0 < / < m, such messages are outbound 2/ rounds,
turn around, and take another 2/ rounds until reaching p, when a
new phase starts;

@ in the end of round n of phase m + 1, the outbound messages,
which started with 2™+! > n possible hops, reach p before
turning back and p decides leader.

O
B3l

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

Can we send less information in messages?
Algorithm operates in lockstep;
Can we move some state that controls algorithm from messages
to processes?
Example: number of hops in messages;

e can we control turn around of messages with process state?
Insight:

e everything happens in lockstep;
o all messages travel with the same hops left;

Is it so? Must prove;

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

Lemma

In each round, all non-null messages are either outgoing with same
remaining hops left, or incoming.

@ induction on the number of rounds;
@ base case: all messages (out, _, 1);

@ inductive step: messages generated are either null, the result of
filter,(), which preserves hypothesis, or (out, _, 2"*1);

@ induction hypothesis not enough ...

N

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

(continued)
need to strengthen lemma and prove also that:

All processes that start a new phase, do it in the same round. \

@ proof both lemmas together: use both lemmas in the inductive
step;

@ not enough: why do processes start phase in same round? ...

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

(Continued)
Need to strengthen lemma and prove also that:

All surviving messages turn around in the same round. I

Use the three lemmas together in the inductive step. O I

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

@ In proving insight we learned much about algorithm;
@ Looks possible to control message relaying or turning back:

e without having hops in messages;
e without having direction in messages;

@ Sketch:

@ processes count rounds in each phase;

e half-way through a phase, invert direction of messages;

e at end of phase check if both messages received have self UID, to
decide whether sending new messages;

@ processes keep counting phases and rounds, even after stopping
sending new messages;

e improvement: non-leader output can be decided earlier;

(©?2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS variant

@ Message alphabet: M = U;
@ Process state, state;:
e s— € MU null, initially u;
@ s+ € MU null, initially u;
e o € {unknown, nonleader, leader}, output variable, initially
unknown;
e [: phase, initially 0;
e r:round in phase, initially 1;

@ Message-generating function:

. s— ifj=i-1
msgu((s=,s+,0,1).)) = {s+ ifj' =i+1

'—2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS variant — state-transition function

trans; ,((s—, s+, 0,1,r),(m—, m+)) when (r = 2') =
(filter,(m-), filter,(m+),0,1,r + 1)

trans; y((s—, s+, 0,1,r),(u, u)) when (r =2 x 2/) =
(u,u,0,1+1,1)

trans; ,((s—, s+, 0,1,r),(m—, m+)) when (r =2 x 2/) =
(null; null, nonleader, ! +1,1)

trans; ,((s—,s+,0,1,r),(u,u)) =
(null; null, leader, I, r + 1)

trans; ,((s—, s+,0,1,r),(m—, m+)) =
(filter,(m+), filter,(m—), 0,1, r + 1)

filter,(v) when v < u = null
filter,(m) =m

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS — complexity

@ Time complexity:

leader in round n+ 2 x 37 2, with m = [log, n] — 1;
O(n), at most 5n;

@ Communication complexity:

a process sends new messages in phase / if receives both
messages from phase / — 1;

messages must have survived 2/~ filterings;

within any group of 2'~' + 1 consecutive processes, at most one
sends new messages in phase /;

total number of messages during phase / bounded by:

/ n

total number of messages at most 8n(1 + [log, nl);
communication complexity: O(nlog n)

©2007-2008 Paulo Sérgio Almeida Leader Election in a Synchronous Ring

	Leader election in a synchronous ring
	The Problem
	Impossibility for identical processes
	A basic algorithm
	An algorithm with O(n logn) communication complexity

