

Leader Election in a Synchronous Ring

Paulo Sérgio Almeida

Distributed Systems Group
Departamento de Informática
Universidade do Minho

Motivation: token ring networks

- In a local area ring network a token circulates around;
- Sometimes the token gets lost;
- A procedure is needed to regenerate the token;
- This amounts to electing a leader;

The problem

- Network graph:
 - n nodes, 1 to n clockwise;
 - symmetry and local knowledge:
 - nodes do not know their or neighbor numbers;
 - distinguish clockwise and anti-clockwise neighbors.
 - notation: operations mod n to facilitate;
- Requirement:
 - eventually, exactly one process outputs the decision *leader*;

Versions of the problem

- The other non-leader processes must also output *non-leader*;
- The ring can be:
 - unidirectional;
 - bidirectional;
- Number of processes n can be:
 - known;
 - unknown;
- Processes can be:
 - identical;
 - have totally ordered *unique identifiers* (UID);

Impossibility for identical processes

Theorem

Let A be a system of $n > 1$ processes in a bidirectional ring. If all n processes are identical, then A does not solve the leader-election.

Proof.

Assume WLOG that we have one starting state. (A solution admitting several starting states would have to work for any of those). We have, therefore, a unique execution. By a trivial induction on r , the rounds executed, we can see that all processes have identical state after any number of rounds. Therefore, if any process outputs *leader*, so must the others, contradicting the uniqueness requirement. □

- If all processes are identical, the problem cannot be solved!
- Intuition: by symmetry, what one does, so do the others;

Breaking symmetry

- Impossibility follows from symmetry;
- Must break symmetry; e.g. with unique UIDs;
- Symmetry breaking is an important part of many problems in distributed systems;

A basic algorithm – LCR

- LCR algorithm (Le Lann, Chang, Roberts);
- Uses comparisons on UIDs;
- Assumes only unidirectional ring;
- Does not rely on knowing the size of the ring;
- Only the leader performs output;

LCR informally

- Each process sends its UID to next;
- If a received UID is greater than self UID, it is relayed on;
- If it is smaller, it is discarded;
- If it is equal, the process outputs *leader*;

LCR formally

- Algorithm parameterized on process index (i) and UID (u);
- Message alphabet $M = \mathbb{U}$, the set of UIDs;
- Process state, $state_i$:
 - $send \in M \cup \text{null}$, initially u ;
 - $status \in \{\text{unknown}, \text{leader}\}$, output variable, initially unknown ;
- Message-generating function:

$$msg_{i,u}((send, status), i + 1) = send;$$

- State-transition function:

$$trans_{i,u}((send, status), msg) = \begin{cases} (\text{null}, status) & \text{if } msg = \text{null} \\ (\text{null}, status) & \text{if } msg < u \\ (msg, status) & \text{if } msg > u \\ (\text{null}, \text{leader}) & \text{if } msg = u \end{cases}$$

Proof of correctness

- Let m be the index of process with maximum UID u_m ;
- Show two lemmas.

Lemma

Process m outputs leader in round n .

Lemma

Processes $i \neq m$ never output leader.

Theorem

LCR solves leader election.

Proof of correctness - first lemma

Lemma

Process m outputs leader in round n .

Proof.

- For $i \neq m$, if after round r , $send_{i-1} = u_m$, then in round $r + 1$, $send_i = u_m$;
- For $0 \leq r \leq n - 1$, after r rounds, $send_{m+r} = u_m$;
- Node before m in ring in $m + n - 1$;
- After round $n - 1$, $send_{m+n-1} = u_m$;
- In round r , m receives u_m and outputs *leader*;

Proof of correctness - second lemma

Lemma

Processes $i \neq m$ never output leader.

Proof.

- A process i can only output *leader* if it receives $msg = u_i$;
- A non-null message can only be some u_j , from process j ;
- As UIDs are unique, msg would have to originate in i and travel around the ring, including m ;
- But as $u_i < u_m$, m does not relay msg , sending *null* instead;
- Therefore, msg cannot arrive at i , and i cannot output *leader*;

Halting and non-leader outputs

- LCR as presented does not halt;
- Processes other than leader stay in *unknown* status;
- Can be modified to halt and make others output *other*;
- When leader outputs, sends *halt* message and halts;
- When a process receives *halt*, passes it on and then halts;
- Processes that receive *halt* can output *other*;
- This transformation to halting and output in all processes is quite general, and can be applied in many scenarios;

Halting and non-leader outputs; an improvement

- other processes can output *other* as soon as they receive a UID greater than own;
- but they cannot halt immediately; they must keep on relaying;

Arriving at output can be sometimes much sooner than halting;

- but they are independent things;
- sometimes a premature halt, forgetting to keep on reacting, can deadlock the rest of the system;

Halting and non-leader outputs formally

- Message alphabet: as before or $\{halt\}$;
- Process states: as before or $halted$;
- Halting states: $halted$;
- $status \in \{unknown, leader, other\}$;
- Message-generating function as before;
- State-transition function:

$$trans_{i,u}((send, status), msg) = \begin{cases} halted & \text{if } send = halt \\ (halt, status) & \text{if } msg = halt \\ (null, status) & \text{if } msg = null \\ (null, status) & \text{if } msg < u \\ (msg, other) & \text{if } msg > u \\ (halt, leader) & \text{if } msg = u \end{cases}$$

Complexity

- Time complexity:
 - n rounds until leader elected;
 - $2n$ rounds until last process halts;
 - And if processes know the size of the ring?
- Communication complexity:
 - $O(n^2)$ messages in the worst case for both versions;
 - $O(n \log n)$ messages in average;
 - Which configuration results in less messages? How many?
 - Which configuration results in more messages? How many?

HS – an algorithm with $O(n \log n)$ communication complexity

- HS algorithm (Hirshberg, Sinclair);
- Uses comparisons on UIDs;
- Assumes bidirectional ring;
- Does not rely on knowing the size of the ring;
- Only the leader performs output (can be overcome with transformation);

HS informally

- Processes operate in phases $l = 0, 1, 2, \dots$;
- In each phase, processes send token with UID in both directions;
- Tokens in phase l intend to travel 2^l and turn back to sender;
- If a received UID is greater than self UID, it is relayed on;
- If it is smaller, it is discarded;
- If it is equal, the process outputs *leader*;

HS formally

- Message alphabet: $M = \{out\} \times \mathbb{U} \times \mathbb{N} \cup \{in\} \times \mathbb{U}$;
- Process state, $state_i$:
 - $s_- \in M \cup null$, initially $(out, u, 1)$;
 - $s_+ \in M \cup null$, initially $(out, u, 1)$;
 - $o \in \{unknown, leader\}$, output variable, initially *unknown*;
 - l : phase, initially 0;
- Message-generating function:

$$msg_{i,u}((s_-, s_+, o, l), j) = \begin{cases} s_- & \text{if } j = i - 1 \\ s_+ & \text{if } j = i + 1 \end{cases}$$

HS – state-transition function in imperative pseudo-code

```
s+ := null
s- := null
if message from i-1 is (out, v, h):
    case
        v > u and h > 1: s+ := (out, v, h-1)
        v > u and h = 1: s- := (in, v)
        v = u: o := leader
if message from i+1 is (out, v, h):
    case
        v > u and h > 1: s- := (out, v, h-1)
        v > u and h = 1: s+ := (in, v)
        v = u: o := leader
if message from i-1 is (in, v) and v != u:
    s+ := (in, v)
if message from i+1 is (in, v) and v != u:
    s- := (in, v)
if messages from i-1 and i+1 are both (in, u):
    l := l+1
    s+ := (out, u, 2^l)
    s- := (out, u, 2^l)
```


Problems with imperative description

- Imperative style makes it unclear functional dependence and difficult reason;
- Different places assign to the same variable;
- Are those cases mutually exclusive?
- Examples:
 - what if messages $(out, v, 3)$ and $(out, w, 1)$ arrived at a node?
 - what if messages $(out, v, 1)$ and (in, w) arrived at a node?
 - in both cases, one would have to proceed, the other turn around;
 - two different specifications for same outgoing message;
 - in imperative description, the last assignment wins;
 - should not happen; but won't it? should be proven;
- Algorithm depends on some combinations of incoming messages never occurring;

Alternative: functional description

- As we need to describe functions . . .
... why not adopt a functional style?
- Pseudo-code with functional flavour;
- Functions defined by cases, using pattern matching;
- Functions can be partial:
 - not all cases are covered;
 - can make functions simpler;
 - a separate proof shows those cases never happen;
 - proof would have to exist anyway, if correctness depends on it;

HS formally – state-transition function

$trans_{i,u}((s-, s+, o, l), ((out, u, h), (out, u, h))) =$
 $(null, null, leader, l)$

$trans_{i,u}((s-, s+, o, l), ((in, u), (in, u))) =$
 $(out, u, 2^{l+1}), (out, u, 2^{l+1}), o, l + 1$

$trans_{i,u}((s-, s+, o, l), (m-, m+))$ when $lasthop(m-, m+) =$
 $(filter_u(m-), filter_u(m+), o, l)$

$trans_{i,u}((s-, s+, o, l), (m-, m+)) =$
 $(filter_u(m+), filter_u(m-), o, l)$

$lasthop((out, _, 1), _) = true$

$lasthop(_, (out, _, 1)) = true$

$lasthop(_, _) = false$

$filter_u((out, v, h))$ when $v < u = null$

$filter_u((out, v, 1)) = (in, v)$

$filter_u((out, v, h)) = (out, v, h - 1)$

$filter_u(m) = m$

HS – correctness

- Several steps in the proof;
- Safety:
 - At most one process decides to become leader;
- Termination:
 - Some process will decide to become leader;

HS – correctness

Lemma

A process with UID u outputs leader when a message started at u travels the whole ring and arrives back at u .

Proof.

- a process with UID u only decides *leader* when receiving a message $m = (out, u, _)$;
- as all UIDs are different, the message started at u ;
- as the message is outgoing, it has not turned back and travelled always in the same direction;
- therefore, the message travelled the whole ring.

HS – correctness

Lemma

At most one process can become leader: the one with the maximum UID.

Proof.

- from the previous lemma, for a process with UID v to become leader, it must receive a message $(out, v, _)$ that travelled the whole ring;
- such message must have been subject to the $filter_u$ function for every other process;
- the only way for the message to arrive non-null is v to be greater than all other UIDs.

HS – correctness

Lemma

Process p with maximum UID u decides leader in round $n + 2 \times \sum_{l=0}^m 2^l$, with m the greatest integer such that $2^m < n$.

Proof.

- messages $(out, u, _)$ started at p are always relayed; never discarded;
- for phases $0 \leq l \leq m$, such messages are outbound 2^l rounds, turn around, and take another 2^l rounds until reaching p , when a new phase starts;
- in the end of round n of phase $m + 1$, the outbound messages, which started with $2^{m+1} \geq n$ possible hops, reach p before turning back and p decides *leader*.

Deriving a variant of HS with smaller messages

- Can we send less information in messages?
- Algorithm operates in lockstep;
- Can we move some state that controls algorithm from messages to processes?
- Example: number of hops in messages;
 - can we control turn around of messages with process state?
- Insight:
 - everything happens in lockstep;
 - all messages travel with the same hops left;
- Is it so? Must prove;

Deriving a variant of HS with smaller messages

Lemma

In each round, all non-null messages are either outgoing with same remaining hops left, or incoming.

Proof.

- induction on the number of rounds;
- base case: all messages $(out, _, 1)$;
- inductive step: messages generated are either *null*, the result of $filter_u()$, which preserves hypothesis, or $(out, _, 2^{l+1})$;
- induction hypothesis not enough ...

Deriving a variant of HS with smaller messages

Proof.

(continued)

need to strengthen lemma and prove also that:

Lemma

All processes that start a new phase, do it in the same round.

Proof.

- proof both lemmas together: use both lemmas in the inductive step;
- not enough: why do processes start phase in same round? ...

Deriving a variant of HS with smaller messages

Proof.

(Continued)

Need to strengthen lemma and prove also that:

Lemma

All surviving messages turn around in the same round.

Proof.

Use the three lemmas together in the inductive step.

Deriving a variant of HS with smaller messages

- In proving insight we learned much about algorithm;
- Looks possible to control message relaying or turning back:
 - without having hops in messages;
 - without having direction in messages;
- Sketch:
 - processes count rounds in each phase;
 - half-way through a phase, invert direction of messages;
 - at end of phase check if both messages received have self UID, to decide whether sending new messages;
 - processes keep counting phases and rounds, even after stopping sending new messages;
 - improvement: non-leader output can be decided earlier;

HS variant

- Message alphabet: $M = \mathbb{U}$;
- Process state, $state_i$:
 - $s_- \in M \cup \text{null}$, initially u ;
 - $s_+ \in M \cup \text{null}$, initially u ;
 - $o \in \{\text{unknown}, \text{nonleader}, \text{leader}\}$, output variable, initially *unknown*;
 - l : phase, initially 0;
 - r : round in phase, initially 1;
- Message-generating function:

$$msg_{i,u}((s_-, s_+, o, l), j) = \begin{cases} s_- & \text{if } j = i - 1 \\ s_+ & \text{if } j = i + 1 \end{cases}$$

HS variant – state-transition function

$trans_{i,u}((s_-, s_+, o, l, r), (m_-, m_+))$ when $(r = 2^l) =$

$(filter_u(m_-), filter_u(m_+), o, l, r + 1)$

$trans_{i,u}((s_-, s_+, o, l, r), (u, u))$ when $(r = 2 \times 2^l) =$

$(u, u, o, l + 1, 1)$

$trans_{i,u}((s_-, s_+, o, l, r), (m_-, m_+))$ when $(r = 2 \times 2^l) =$

$(null, null, nonleader, l + 1, 1)$

$trans_{i,u}((s_-, s_+, o, l, r), (u, u)) =$

$(null, null, leader, l, r + 1)$

$trans_{i,u}((s_-, s_+, o, l, r), (m_-, m_+)) =$

$(filter_u(m_+), filter_u(m_-), o, l, r + 1)$

$filter_u(v)$ when $v < u = null$

$filter_u(m) = m$

HS – complexity

- Time complexity:
 - leader in round $n + 2 \times \sum_{l=0}^m 2^l$, with $m = \lceil \log_2 n \rceil - 1$;
 - $O(n)$, at most $5n$;
- Communication complexity:
 - a process sends new messages in phase l if receives both messages from phase $l - 1$;
 - messages must have survived 2^{l-1} filterings;
 - within any group of $2^{l-1} + 1$ consecutive processes, at most one sends new messages in phase l ;
 - total number of messages during phase l bounded by:

$$4 \left(2^l \cdot \left\lfloor \frac{n}{2^{l-1} + 1} \right\rfloor \right) \leq 8n$$

- total number of messages at most $8n(1 + \lceil \log_2 n \rceil)$;
- communication complexity: $O(n \log n)$

