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Abstract

This paper describes a consensus service and suggests
its use for the construction of fault-tolerant agreement
protocols. We show how to build agreement protocols,
using a classical client-server interaction, where (1)
the clients are the processes that must solve the agree-
ment problem, and (2) the servers implement the con-
sensus service. Using a generic notion, called consen-
sus filter, we llustrate our approach on non-blocking
atomic commitment and on view synchronous multi-
cast. The approach can trivially be used for total order
broadcast. In addition of its modularity, our approach
enables efficient implementations of the protocols, and
precise characterization of their liveness.

1 Introduction

General services, used to build distributed applica-
tions, or to implement higher level distributed services,
have become common in distributed systems. Exam-
ples are numerous: file servers, time servers, name
servers, authentication servers, etc. However, there
have been very few proposals of services specifically
dedicated to the construction of fault-tolerant agree-
ment protocols, such as non-blocking atomic commit-
ment protocols, total order broadcast/multicast pro-
tocols. Usually, these protocols are considered sepa-
rately, and do not rely on a common infrastructure.

A notable exception is the group membership ser-
vice [14], used to implement total order multicast pro-
tocols [2, 12, 5, 6]. However, the group member-
ship problem (solved by the membership service) is
just another example of an agreement problem that
arises in distributed systems. All the agreement prob-
lems (atomic commitment, total order, membership)
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are related to the abstract consensus problem [4, 17],
and thus are subject, in asynchronous systems, to the
Fischer-Lynch-Paterson impossibility result [7, 3]'. In
fact, most of the agreement protocols described in the
literature usually guarantee the required safety prop-
erty, but fail to define the conditions under which live-
ness is ensured. This is unsatisfactory, not only from
a theoretical point of view, but also from a practi-
cal point of view: the user of a fault-tolerant system
should know the conditions under which liveness is
guaranteed.

To summarize, not only have the various agreement
protocols been considered separately, but also, most of
them lack a precise liveness characterization?. Thanks
to the recent work of Chandra and Toueg on failure
detectors, we now have a formalism that allows to de-
fine conditions under which the consensus problem is
solvable in asynchronous distributed systems. This is
not only of key importance from a theoretical point
of view? but also from a system builder point of view:
consensus stops being a taboo problem, which means
that it is time to define a common infrastructure to
solve all agreement-type problems that arise in dis-
tributed systems. This i1s precisely the objective of
this paper.

The paper suggests the use of a consensus seruvice,
implemented by a set of consensus server processes?,
We introduce the
generic notion of consensus filter to customize the con-
sensus service for specific agreement protocols. Build-

to build agreement protocols.

ing an agreement protocol leads to a client-server

1'We recall the definition of the consensus problem later in the
paper. The Fischer-Lynch-Paterson impossibility result states
that there is no deterministic algorithm that solves consensus
in an asynchronous system, when one process can crash.

2 An exception is the total order broadcast protocol in [4].

3In [10] we present a systematic way to transform several
agreements problems into consensus.

4The number of server processes depends on the desired
reliability.



interaction, where (1) the clients are the processes
that have to solve an agreement problem, and (2)
the servers implement the consensus service, accessed
through the consensus filter. The client-server inter-
action differs however from the usual client-server in-
teraction scheme: we have here an n.-n; interaction
(ne clients, n, servers), with n. > 1, ny > 1, rather
than the usual 1-1, or 1-ng interaction.

The rest of the paper is structured as follows. Sec-
tion 2 defines the system model, the consensus prob-
lem, and briefly recalls the result about the consen-
sus problem established by Chandra and Toueg. Sec-
tion 3 presents the “client/consensus-server” interac-
tion scheme. A non-blocking atomic commitment pro-
tocol is used throughout the section to illustrate the
interaction scheme. The Chandra-Toueg total order
algorithm can trivially be implemented using our con-
sensus service. Section 4 illustrates the use of the con-
sensus service on another agreement problem: view
synchronous multicast. Section 5 discusses implemen-
tation issues, presents a cost analysis, and gives ex-
perimental results. Section 6 concludes the paper.

2 System model and the consensus
problem

2.1 System model

We consider an asynchronous distributed sys-
tem composed of a finite set of processes @ =
{p1,p2,...,pn} completely connected through a set
of channels. Processes may fail by crashing. We do
not consider Byzantine failures. A correct process is
a process that does not crash in an infinite run. Pro-
cesses communicate using the following communica-
tion primitives:

e send(m) to p;: sending of message m to process
pj, over a reliable channel. This primitive en-
sures that a message sent by a process p; to a
process p; is eventually received by p;, if p; and
p;j are correct (i.e. do not crash)®.

o Rmulticast(m) to Dst(m): reliable multicast of
m to the set of processes Dst(m). This primitive
ensures that, if the sender is correct, or if one
correct process p; € Dst(m) receives m, then ev-
ery correct process in Dst(m) eventually receives
m.

5Reliable channels can be implemented by retransmitting
messages. This does not exclude network partitions, assuming
that partitions are eventually repaired.

o multisend(m) to Dst(m): equivalent to
for every p; € Dst(m), send(m) to p;.

The primitive multisend is introduced as a con-
venient notation, whereas Rmulticast introduces
a stronger semantics. Implementation of the
Rmulticast primitive, and 1its cost, should be ignored
for the moment. These issues are discussed in Sec-
tion 5.

2.2 Consensus and failure detectors

In the consensus problem, defined over a set II of
processes (IT C ), every process p; € II starts with
an initial value v;, and the processes have to decide on
a common value v. Formally, the consensus is defined
by the following three properties [4]:

Uniform-Agreement. No two processes decide
differently®.

Uniform-Validity. If a process decides v, then v is
the initial value of some process.

Termination. Every correct process eventually de-
cides.

Fischer, Lynch and Paterson have shown that there
is no deterministic algorithm that solves consensus
in asynchronous systems where processes are subject
to even a single crash failure [7]. Later, Chandra
and Toueg have shown that, by augmenting an asyn-
chronous system with a failure detector (even unre-
liable, i.e. which makes false suspicions), consensus
becomes solvable [4]. In this model, each process has
access to a local failure detector module, which main-
tains a list of processes that it currently suspects to
have crashed. In [4], Chandra and Toueg present a
protocol (which we note GS-consensus) that solves the
consensus problem given a majority of correct pro-
cesses, and any failure detector of class &8. The
class OS8 is characterized by the following two prop-
erties: (1) strong completeness: eventually every pro-
cess that crashes is permanently suspected by every
correct process, and (2) eventual weak accuracy: even-
tually some correct process i1s never suspected by any

correct pI'OCCSS7 .

6By requiring Uniform Agreement (instead of Agreement),
we consider here the uniform consensus problem. We have
shown in [8] that consensus and uniform consensus are equiva-
lent in asynchronous systems augmented with unreliable failure
detectors.

"Failure suspicions can be implemented using time-outs.
Time-outs ensure the strong completeness property. Eventual
weak accuracy property can be ensured with high probability, if
(1) the time-outs are adequately defined, and (2) possible link
failures are eventually repaired.



3 The “client/consensus-service”
interaction model

3.1 Overview

In this section we describe how clients interact with
the consensus service. Our consensus service consists
of a set of consensus server processes ps,, Psy, ... € €,

the &8-

consensus protocol. Practical issues in implementing

which execute a consensus protocol, e.g.

such a consensus protocol are discussed in Section 5.
In order to simplify the notation, ps, will be noted s;.

The generic “client/consensus-service” interaction
uses the Rmulticast and the multisend communication
primitives defined in the previous section. We distin-
guish 3 steps (detailed in Sections 3.3, 3.4, and 3.5) in
the client-server interaction:

1. an wnitiator process starts by multicasting a mes-
sage m to the set of client processes, using the
Rmulticast primitive (Arrow 1, Fig. 1);

2. every client, after reception of message m, in-
vokes the consensus service, using a multisend
primitive (Arrow 2, Fig. 1);

3. finally, the consensus service sends the decision
back to the clients, using a multisend primitive

(Arrow 3, Fig. 1).

Figure 1: Invocation-reply for the point of view of a
client

3.2 Tllustration: non-blocking atomic
commitment

Throughout the section we show how a non-
blocking atomic commitment protocol can be built us-
ing our consensus service. Another example is given
in Section 4.

A transaction originates at a process called the
Transaction Manager, which issues read and write
operations to Data Manager processes [1]. At the
end of the transaction, the Transaction Manager and

the Data Managers together execute a non-blocking
atomic commitment ® protocol (or NB-AC protocol
for short) in order to decide on the commit or abort
outcome of the transaction. The NB-AC protocol is
initiated by the Transaction Manager, which sends a
vote-request message to the Data Managers. A Data
Manager votes yes to indicate that it is able to make
the temporary writes permanent, and votes no other-
wise. If the outcome of the NB-AC protocol is commit,
then all the temporary writes are made permanent; if
the outcome is abort, then all temporary writes are
ignored. Formally, the problem to be solved by a NB-
AC protocol 1s defined by the following four proper-
ties. (i) NB-AC-Uniform-Agreement: no two processes
decide differently. (ii) NB-AC-Uniform-Validity: the
outcome of any process is commit only if all processes
have voted yes. (iii) NB-AC-Termination: every cor-
(iv) NB-AC-Non-

Triviality: 1f all processes vote yes, and no process

rect process eventually decides.

is ever suspected, the outcome must be commit®.
3.3 The initiator

The invocation of the consensus service is started
by an initiator process, which reliably multicasts the
message (cid, data, clients(cid)) to the set clients(cid)
(Arrow 1in Fig. 1). The parameter cid (consensus id)
uniquely identifies the interaction with the consensus
service, data contains some problem specific informa-
tion illustrated below, and clients(cid) is the set of
clients that will invoke the consensus service:

1 get a unique identifier cid, and define
the set clients(cid) ;
2 Rmulticast(cid, data, clients(cid)) to clients(cid) ;

Figure 2: Algorithm of the initiator

Example (initiator for NB-AC): Consider a
transaction identified by an identifier ¢id, and the com-
mitment of the transaction. Arrow 1 in Figure 1 repre-
sents the vote-request message sent by the Transaction
Manager to the Data Managers: cid is the transac-
tion identifier tid, the field data corresponds to wvote-
request, and clients(cid) is the set of Data Managers
accessed by the transaction (to simplify, we consider
that the Transaction Manager is also a member of the
set clients(cid)).

8 “Non-blocking” means that correct processes must eventu-
ally decide despite failures [16].

9This condition actually defines the weak NB-AC prob-
lem [8]. The distinction between weak NB-AC and strong NB-
AC problems is however irrelevant in the context of this paper.




3.4 Client-server interaction: the clients’
point of view

Upon reception of the message (cid,data,
clients(cid)) multicast by the initiator, a client pro-
cess p; computes datai, multisends the message
(cid, datal, clients(cid)) to the consensus service, and
waits for the decision of the consensus service:

1 upon reception of (cid, data, clients(cid)) by a client p;:
2 compute data! ;
3 multisend(cid, data!, clients(cid))
to the consensus service ;
4 walt reception of (cid, decision)
from the consensus service ;

when the function InitValue can be called. Once
CalllnitValue 1s true, the function InitValue is
called, with the messages received as argument: the
function returns the initial value for the consensus pro-
tocol (line 3, Fig. 5). At that point the consensus pro-
tocol is started. In Figure 5 (line 4), the consensus pro-
tocol is represented as a function consensus. The de-
cision, once known, is multisent to the set elients(cid).

Figure 3: Algorithm of a client process p;

Example (client for NB-AC): The data; value
is the yes/no vote of the Data Manager p;, and the
decision awaited from the consensus service is either
commut or abort.

3.5 Client-server interaction: the
servers’ point of view

The interaction between the clients and the con-
sensus service is illustrated from the point of view of
a server process in Figures 4 and 5. The genericity of
the consensus service is obtained thanks to the notion
of “consensus filter”, depicted in Figure 4 as a shaded
ring. The consensus filter allows to tailor the con-
sensus service to any particular agreement problem:
the filter transforms the messages received by a server
process s;, into an initial value v; for the consensus
protocol.

Figure 4: Invocation-reply from the point of view of
server s; (arrows to and from ss, s3 have not been
drawn)

A consensus filter is defined by two parameters,
(1) a predicate CallInitValue, and (2) a function
InitValue. The predicate CalllnitV alue decides

1 receive messages (cid, datal, clients(cid)) from client p;
until CalllnitValue ;
2 dataReceived;
{data! | message (cid, datal, clients(cid)) received} ;
3 w; « InitValue(dataReceived; ) ;
decision < consensus(vy) ;
5 multisend(cid, decision) to clients(cid) ;

i

Figure 5: Algorithm of a server s;

Example (consensus filter for NB-AC): The
consensus filter, given below, tailors the consensus
service to build a NB-AC protocol. The filter is
defined as follows. Consider a server s;. The
NB-AC-Calllnit Value predicate follows the NB-AC-
Non-Triviality condition (Sect. 3.2): the predicate
at s; returns true as soon as, for every client pro-
cess p;, either (1) the message (cid, vote;, clients(cid))
from p; has been received, or (2) s; suspects p;. The
function NB-AC-InitValue function follows the NB-
AC-Uniform-Validity condition: the function returns
commit if and only if a yes vote has been received
by s; from every process in clients(cid), and abort

otherwise!?.

Predicate NB-AC-CalllnitValue :
if [ for every process p; € clients(cid):
received (cid, vote;, clients(cid)) from p;
or
s suspects p; |
then return ¢rue else return false.
Function NB-AC-InitValue(dataReceived; ) :
if [ for every process p; € clients(cid):
(cid, vote;, clients(cid)) in dataReceived,
and
vote; = yes |
then return commit else return abort.

3.6 Correctness of the interaction
scheme

The generic “clients/consensus service” invoca-
tion scheme is live if it satisfies the following prop-
erty: If the imitiator is correct, or if some correct

10 commit/abort are here initial values for the consensus, and

not yet the decision of the consensus service.




client has received the (cid,data,clients(cid)) mes-
sage sent by the initiator, then every correct client in
clients(cid), eventually receives the decision message
(cid, decision) from the consensus service. This prop-
erty holds under the following three conditions:

C1. Liveness of the filter predicate CalllnitValue.
If every correct process p; € clients(cid) sends
the message (cid, datal, clients(cid)) to the con-
sensus service, then Calllnit Value eventually re-
turns {rue.

C2. Liveness of the consensus protocol.
If every correct server s; eventually starts the
consensus protocol, then the protocol eventu-
ally terminates (i.e. every correct server eventu-

ally decides).

C3. Correctness of some server. There is at least
one correct server.

The conditions C1 to C3 ensure the liveness of the
interaction scheme for the following reason. As-
sume that the initiator of the request cid is cor-
rect, or that a correct client has received the message
(cid, data, clients(cid)) sent by the initiator. As the
message 1s sent using a reliable multicast, every correct
process in clients(cid) eventually receives the message.
Thus every correct process p; € clients(cid) eventu-
ally multisends the message (eid, datal, clients(cid))
to the consensus service. By condition C1, for every
correct server s;, CalllnitValue eventually returns
true. Hence, every correct server s; eventually calls
the InitV alue function, and starts the consensus pro-
tocol. By condition C2, every correct server s; even-
tually decides. The decision is returned to the clients
using a reliable multisend. By condition C3, every
correct process p; € clients(cid) eventually gets the
decision.

Example (correctness of the NB-AC protocol):
We show first that the conditions C1, C2, C3 are sat-
isfied by our generic consensus service and the NB-
AC filter: this implies that the NB-AC-Termination
property is satisfied, given that the Transaction Man-
ager is correct, or that a correct Data Manager has
received the wvote-request message. If we assume re-
liable channels and a failure detector that satisfies
strong completeness, then the NB-AC-CallinitValue
predicate satisfies C1. Condition C2 is satisfied by
the Chandra-Toueg &S8-consensus protocol, given a
majority of correct server processes [4]. A majority
of correct server processes also ensures condition C3.

Consider now the other properties that define the
NB-AC problem (Sect. 3.2). The NB-AC-Uniform-
Agreement property follows directly from the Uniform-
Agreement property of the consensus problem. The
NB-AC-Uniform-Validity property is ensured by the
NB-AC-InitValue function of the filter (the initial
value for the consensus is commit only if all clients have
voted yes), together with the Uniform-Validity prop-
erty of consensus. The NB-AC-Non-Triviality prop-
erty is ensured by the NB-AC-Calllnit Value predicate
of the filter, together with the NB-AC-Init Value func-
tion of the filter: if no client is ever suspected, and all
clients vote yes, then every server starts the consen-
sus with the initial value commit. In this case, by the
Uniform-Validity property of consensus, the decision
can only be commut.

In summary, assuming the consensus service is im-
plemented with the &8-consensus protocol, the NB-
AC protocol is correct if (a) a majority of server pro-
cesses are correct, and (b) the failure detector is of

class ©S.

4 Solving agreement problems using
the consensus service

The “client/consensus service” interaction has been
illustrated in the previous section on a non-blocking
atomic commitment protocol. Chandra and Toueg
have shown in [4] how to build a total order broad-
cast protocol using a consensus algorithm. This “re-
duction” can be expressed using our consensus service
in a straightforward way (empty filter). We give here
another example that requires a non-empty filter.

4.1 View synchronous multicast

View synchronous multicast, initially introduced by
the Tsis system [2], can be seen as an atomic (in the
sense of all-or-nothing) multicast for dynamic groups
of processes. This primitive is adequate, for exam-
ple, in the context of the primary-backup replication
technique, to multicast the update message from the
primary to the backups [11].

Consider a dynamic group g, i.e. a group whose
membership changes during the life-time of the sys-
tem, for example as the result of the crash of one of its
members. A crashed process p; is removed from the
group; if p; later recovers, then it rejoins the group
(usually with a new identifier). The notion of view is
used to model the evolving membership of a group.
The initial membership of a group g is noted wvy(g),



and vy (g) is the k' membership of g 1.

Within this context, view synchronous multicast is
defined as follows. Consider a group ¢, and let #;(k)
be the local time at which a process p; delivers view
vi(g), with p; € vi(g). From t;(k) on, and until the
delivery of the next view vgy1(g), all multicasts m of
p; are sent to vg(g), and are time-stamped with the
current view number k. For every multicast of such a
message m, view synchronous multicast ensures that
either (1) no new view v41(g) is ever defined and all
the members of vx(g) eventually deliver m, or (2) a
new view vg41(g) is defined, and all the processes in
vi(9) N vi41(g) deliver m before delivering the next
view vg11(g) 12

4.2 Implementation of view synchronous
multicast

Isis has implemented view synchronous multicast,
based on a membership service [14], using a flush pro-
tocol [2]. As pointed out in [15], the flush protocol
might lead, in certain circumstances, to violate the
view synchronous multicast definition: [15] proposes a
correct implementation of view synchronous multicast,
also based on a membership service.

Using a consensus service, view synchronous multi-
cast can be implemented without relying on a mem-
bership service. Given a group g, we describe the im-
plementation of the case where members are removed
from the current view of a group. The algorithm for
adding new members to the view is very similar.

Implementation of view synchronous multicast con-
sists in launching multiple, independent, instances of
consensus, identified by an integer k. This i1s similar
to the Chandra-Toueg total order broadcast algorithm
[4]. However, consensus number k decides here not
only on a batch of messages batch(k) (as in Chandra-
Toueg’s algorithm), but also on the membership for
the next view v41(g). Each process p;, after learning
the decision of consensus number k, first delivers the
messages of batch(k) that it has not yet delivered, and
then delivers the next view vg41(g).

Consider a group g and its current view vg(g). The
decision to launch consensus number & is related to the
stability of the messages multicast within view vy (g).
Let m be a message multicast to the view vg(g) and
received by p;: the local predicate stable;(m) is true
if and only if process p; knows that every process p;
in vy (g) has received m (and will thus eventually de-
liver m unless p; crashes). Therefore, whenever some

1 This unique sequence defines what has been called a “linear
membership”.

12 “Extended virtual synchrony” [13] extends this property to
the non “linear membership” model.

process p; € wvi(g) has received a message m, and
stable;(m) does not hold after some time-out period
following the reception of m, then p; becomes the ini-
tiator for consensus number k (note that there can
be more than one initiator for consensus number k).
The generic interaction with the consensus service de-
scribed in Section 3 is instantiated as follows, to im-
plement view synchronous multicast:

e The parameter cid is the pair (gid, k), where gid
is the identifier of group ¢, and %k the current
view number. The set clients(cid) is the set

vk (9).

e The initiator reliably multicasts (cid, req,
clients(cid)) to the set clients(cid), where req
is the request for a view change (req = data in

Fig. 2).

e Upon reception of M = (eid, req, clients(cid)),
a client p; defines data) as the set unstable;
of messages received by p; that are not sta-
ble. The client process p; then multisends
(cid, unstable;, clients(cid)) to the consensus
servers'3,

e The servers’” VS-filter is defined as follows. The
VS5-Calllnit Value predicate returns true as soon
as the message (cid, unstable;, clients(cid)) has
been received from a majority of clients(cid) and
from all non-suspected processes in clients(cid).
The majority requirement is related to the usual
assumption that every view contains a majority
of correct processes.

Predicate VS-CalllnitValue :

if received (cid, unstable;, clients(cid)) from a

majority of clients(cid)
and for every process p; € clients(cid):

[ received (cid, unstable;, clients(cid)) from p;
or
s suspects p; |

then return true else return false.

The function VS-InitValue returns a pair
(batch(k), vk+1(g), where batch(k) is the union
of the sets unstable; received, and vi41(g) is the
set of clients p; such that unstable; has been re-
ceived. The set vi41(g) is the proposal for the
membership of the next view.

Function VS-InitValue(dataReceived; ) :
batch(k) < dataReceived;;
vr41(9) < {pi | unstable; € dataReceived; };
return (batch(k),vry1(g)) -

13When using view synchronous multicast to implement the
primary-backup replication technique, the set unstable; con-
tains at most one message [11].



The pair (batch(k), vi11(g)) returned by the VS-
InatValue function is the initial value of server s; for
the consensus, and not yet the decision of the con-
sensus service. For every server s;, the initial value
of s; is such that vg41(g) contains a majority of pro-
cesses of vi(g), and all the non-suspected processes.
Thus a client process p; that has not been suspected
by any server s; is necessarily member of the next view
vi+1(9). Moreover, if a client process p; is member of
the next view vi11(g), then p;’s set unstable; is in-
cluded in batch(k). As every process in vx11(g), before
delivering vg41(g), delivers the messages in batch(k)
that it has not yet delivered, the view synchronous
multicast property 1s ensured.

Liveness of the implementation of view synchronous
multicast is ensured by the generic conditions C1, C2,
C3 (Sect. 3.6). Condition Cl is satisfied if we as-
sume a majority of correct processes in vy (g), reliable
channels, and a failure detector that satisfies strong
completeness. Condition C2 is satisfied with the &S-
consensus protocol, assuming a failure detector of class
&S, and a majority of correct server processes [4]. A
majority of correct server processes satisfies condition

C3.

5 Implementation issues

This section discusses implementation issues related
to the invocation scheme of Section 3. Our aim is to
show that the generality of the consensus-server ap-
proach does not imply a loss of efficiency.

We reasonably assume that runs with no failure and
no failure suspicion are the most frequent ones, and
implementation should be optimized for this case. We
call a “good run” a run in which no failure occurs and
no failure suspicion is generated.

5.1 Reducing the number of messages

We start be showing that a simple optimization of
the reliable multicast and multisend primitives, leads
to reduce the number of messages in good runs.

The implementation assumes a failure detector that
satisfies strong completeness: every crashed process 1s

eventually suspected forever'?.

5.1.1 Reliable multicast primitive

The reliable multicast primitive Rmulticast(m) to
Dst(m) is usually implemented as follows (see for ex-
ample [4]):

14Using time-outs to generate suspicions leads to satisfy
Strong completeness (Sect. 2).

o for each p; € Dst(m): if p; receives m then
[ for each p; € Dst(m): send(m) to p; |

where “send(m) to p;” sends m to p; over a reliable
channel. In this implementation, every p; € Dst(m)
relays m. This obviously costs O(n?) messages, where
n = |Dst(m)|. However, if the process executing
“Rmulticast(m) to Dst(m)” is correct, there is no
need to relay m. This leads to the following opti-
mized implementation, that costs only O(n) messages
in good runs:

o for each p; € Dst(m):
if (p; has received m from pi) and (p; suspects px)
then [ for each p; € Dst(m): send(m) to p; ]

To be complete, this specification requires some notion
of termination:

o for each p; € Dst(m):
if (p; has received m from pi) and (p; suspects px)
and (Rmulticast of m is not terminated)
then [ for each p; € Dst(m): send(m) to p; ]

A discussion of termination is out of the scope of this
paper.

5.1.2 Multisend primitive

The multisend primitive, used (1) by the client pro-
cesses to invoke the consensus service, and (2) by the
consensus service to send the decision back to the
clients, has been introduced as a convenient notation.
In case (2) it is really needed that every client receives
the decision from the consensus service. Case (1) how-
ever may be interestingly optimized.

While in the original description of the <&S-
consensus protocol [4], every process p; starts with
an initial value v;, there is in fact no need for all pro-
cesses to start with an initial value: it is sufficient if
one correct process starts with an initial value!®
the following, we consider the $S-consensus protocol
with this optimization. In other words, when invoking
the consensus service, it is sufficient that one correct
member of the consensus service has an initial value.

. In

This leads us to introduce a multisend-to-all and a
multisend-to-one primitive:

o multisend-to-all is the multisend introduced so
far, and used by the consensus service to send
back the decision to the clients. If n = | Dst(m)|,
the primitive “multisend-to-all(m) to Dst(m)”
clearly costs O(n) messages;

15Tn every round of the OS-consensus protocol, the coordina-
tor defines its estimate according to the estimates received from
the participants. This can be omitted in the first round: the
coordinator can define its estimate to be its initial value. We
assume this trivial optimization here.



e multisend-to-one sends the message m only to
one process p; in Dst(m). Only when p; is
suspected, then m is sent to the other pro-
cesses. The primitive “multisend-to-one(m) to
Dst(m)” can be used by the clients to invoke
the consensus service. This primitive only costs
one message in good runs. Consequently, us-
ing multisend-to-one instead of multisend-to-all
when invoking the consensus service, reduces the
number of messages in good runs.

We introduce the following notation to formally
define multisend-to-one. Assume that processes
in the system are ordered by their id.  Given
Dst(m), we define first(Dst(m)) to be the process in
Dst(m) with the smallest id, and rest(Dst(m)) to be
Dst(m) \ {first(Dst(m))}. The primitive “multisend-
to-one(m) to Dst(m)”, executed by a process p;, is
defined as follows:

o send(m) to first(Dst(m));
if p; suspects first(Dst(m))
then multisend-to-one(m) to rest(Dst(m)).

To be complete, this specification also requires some
notion of termination, not discussed here. The opti-
mized multisend-to-one primitive obviously costs only
one message in good runs.

5.1.3 Cost analysis

Given the former optimizations, we now analyze the
overall cost of the consensus service invocation scheme
in good runs. When counting the number of messages,
we only consider the messages needed in the protocol
for the clients to receive the decision from the con-
sensus service. This allows us to compare the consen-
sus server invocation scheme with other known proto-
cols, such as commit protocols [16, 1]. Specifically, this
means that we do not count the messages needed to
implement failure suspicions (these messages are not
counted either in the cost analysis of commit proto-
cols).

Let n. be the number of clients, and ng the number
of servers. Messages are shown on Figure 6, which
illustrates the 5 communication steps needed for the
clients to receive the decision:

e step 1, the reliable multicast from the initiator
to the set of clients, costs n. — 1 messages;

e step 2, the multisend-to-one initiated by each of
the clients to one of the consensus servers, costs
ne messages;

e steps 3 and 4 correspond to messages sent by the
OS8-consensus protocol. In good runs, s; knows
the decision at the end of step 4. Steps 3 and 4
each costs ny; — 1 messages (see Fig. 6);

e step 5, the multisend-to-all nitiated by the
server s1 to the clients, costs n. messages.

This gives a total of 3n. + 2n, — 3 messages.

|
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Figure 6: Invocation scheme: messages sent in good
runs (p; is the initiator; p1, pa, ps are the clients; sq,
$2, s3 implement the consensus service).

5.2 Reducing the number of
communication steps

In the preceding section we were concerned by the
implementation of the multicast and multisend com-
munication primitives, in order to reduce the number
of messages sent during good runs. Other optimiza-
tions, aiming at reducing the latency of the overall
invocation scheme, are also possible. We present one
of these optimizations.

The optimization takes advantage of the following
property of the consensus problem. If each member
of the consensus service starts the consensus with the
same initial value v (Vs;, s;, we have v; = v; = v), then
the decision is v. We call “trivial consensus” this spe-
cific configuration. Consider for example non-blocking
atomic commitment. In most of the cases, all the Data
Managers vote yes. In those cases, and assuming that
no failure occur, and no failure suspicion is generated
during the run, the NB-AC-filter (see Sect. 3.5) trans-
forms the non-blocking atomic commitment problem
into a trivial consensus. A trivial consensus can also
be obtained in the case of view synchronous multicast
(Section 4).

A trivial consensus can be solved by the following
interaction scheme (see Figure 7):

e step 1, as before, is the reliable multicast from
the initiator to the set of clients;



e in step 2, the clients use the multisend-to-all
primitive instead of the multisend-to-one prim-
itive. Consequently, every member of the con-
sensus service gets an initial value.

e in step 3, the consensus servers do not launch
the consensus protocol, but simply multisend
(multisend-to-all) their initial value to the
clients. A client receiving the same initial value
v from every member of the consensus service,
knows that v is the decision. If this is not the
case, the consensus problem is not yet solved.
This case in not depicted in Figure 7. The com-
plete protocol to handle this case is given in [9].

Figure 7: Trivial consensus: less communication steps
(p1 is the initiator; p1, pa, ps are the clients; s1, sa, s3
implement the consensus service).

The above interaction scheme reduces the number of
communication steps from 5 (Figure 6) to 3 (Figure 7).

5.3 Comparing the protocols

Despite the fact that the number of messages is
higher in Figure 7 than in Figure 6, reducing the
number of communication steps from 5 to 3 reduces
the latency. This is shown in Figure 8, which gives
the performances obtained on FDDI (100Mb/s) with
SparcStations 20 (running Solaris 2.3), using the UDP
transport protocol. The latency is given for ny = 3,
different values of n., and for both point-to-point and
broadcast communication (broadcast network). In the
latter case, sending a message to n processes costs only
one message.

The reader might notice that (in good runs), if the
consensus service is implemented by the clients them-
selves (i.e. n. = ny and Vi, p; = s;), the communica-
tion scheme depicted in Figure 6 is similar to the com-
munication scheme of the 3PC protocol [16], and the
communication scheme depicted in Figure 7, 1s sim-
ilar to the communication scheme of the D3PC pro-
tocol (Distributed 3PC) [16]. Our generic consensus

server solution however incorporates well defined live-
ness guarantees, and our generic invocation scheme,
together with the &S&-consensus protocol, also applies
to other agreement problems.

Moreover, our solution based on a consensus service
is more modular, and in both cases (i.e. Figures 6
and 7) allows to trade off the number of messages
against resilience: if ng decreases, the resilience of the
consensus server decreases, but the number of mes-
sages also decreases. In the case n. > ng, our generic
solution in Figure 6 requires less messages than 3PC,
and our solution illustrated by Figure 7 requires less
messages than D3PC. For instance, the solution illus-
trated by Figure 6 requires 3n. 4+ 2n; — 3 messages,
whereas the 3PC requires bn, — 3 messages. In prac-
tice ny = 3 probably achieves the desired resilience.
In this case 3n. + 2n; — 3 < 5n, — 3 is true already
for n. = 4 (a transaction on three objects, i.e. one
Transaction Manager and three Data Managers, leads
to ne = 4).

Figure 8: Performances in msec (1 = point-to-point
communication; 2 = broadcast communication)

Figure 8 also gives the cost of the classical 2PC pro-
tocol (two phase commit), and of the 3PC protocol,
among n. processes. The comparison is interesting,
as the 2PC is known to be more efficient than the
3PC protocol, but has the drawback of being block-
ing. Figure 8 shows that the “trivial consensus” inter-
action scheme allows to solve the non-blocking atomic
commitment problem significantly faster than the 3PC
protocol.

6 Conclusion

This paper can be viewed as a first step towards
practical applications of recent work about compar-
ing and solving agreement problems in asynchronous
systems, augmented with unreliable failure detec-
tors [4, 10]. The paper advocates the idea that consen-



sus is not only an interesting theoretical problem, but
can also be viewed as a basic block for building fault-
tolerant agreement protocols. Thanks to the notion of
consensus filter, the generic consensus service can be
tailored to build various agreement protocols. This
consensus service approach is attractive, because it
leads to a generic construction of agreement protocols.
Moreover, by using the recent results on failure detec-
tors for solving the consensus problem, the approach
leads to a rigorous characterization of the liveness of
the agreement protocols. Finally, the modularity of
the consensus service interaction scheme allows inter-
esting optimizations, at the level of the communication
primitives, as well as at the level of the consensus pro-
tocol. The overall conclusion is that, in the context
of agreement protocols, (1) genericity, (2) precise live-
ness properties, and (3) efficient implementation, are
not incompatible.
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