Synchronous Network Model

Paulo Sérgio Almeida

Distributed Systems Group
Departamento de Informatica
Universidade do Minho

©2007-2013 Paulo Sérgio Almeida Synchronous Network Model 1

Synchronous network model Synchronous network systems

Synchronous network system

@ Collection of processes at nodes of a directed graph;

@ Start with some initial state;

@ Can send message to neighbors along edges (channels);
@ Can receive messages from neighbors;

@ Proceed in lockstep doing rounds;

(©?2007-2013 Paulo Sérgio Almeida Synchronous Network Model

Notation

Synchronous network model Synchronous network systems

Directed graph G = (V, E);

n = |V|: size of network;

out;: outgoing neighbors;

in;: incoming neighbors;

nbrs;: neighbors; under bidirectional edges (undirected graph);
distance(i,j): lenght of shortest directed path;

diam: network diameter — maximum distance(i, j) for all i, j;

M: message alphabet; null = no message;

©2007-2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Processes

Components of a process i € V:
@ stlates;: set of states (possibly infinite);
@ start;: set of possible starting states (non-empty);
@ msgs;: message-generating function

states; x out; — MU {null}
@ frans;: state-transition function

states; x (M U {null})I"l — states;

©2007-2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Rounds and execution

@ Execution starts with:
@ processes in some start state;
e channels empty;
@ Processes repeat rounds in lockstep, consisting of two steps:
@ apply message-generating function to compute messages to all
neighbors; put them in channels;
@ apply state-transition function to state and incoming messages to
compute new state; remove messages from channels;

@ Model is deterministic; starting states determine all execution;

'—2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Halting

@ A process halting can be modeled by having halting states;
@ A process in a halting state:
e does not send messages;
e transits to the same state;
@ Here we have node-specific halting states; not the system wide
halting state of traditional finite-state automata;

'—2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Different start times

@ It can be useful to have processes start at different times;

@ Can be modeled by:

adding an extra environment node, with edges to normal nodes;
environment process sends wakeup messages when desired;

processes start in quiescent states; do not send messages;
they change state when receiving some wakeup or other message;

©2007-2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Failures

@ Types of failure: process failure and channel failure;
@ Process stopping failure:

@ a process can stop somewhere in its execution;
e can stop after sending a subset of the round messages;

@ Process Byzantine failure:
@ can send messages in arbitrary ways, not following its specification;
@ Channel failures:

e channels can fail by losing messages (some message placed in a
channel in step 1 of a round are cleared before step 2);

©2007-2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Inputs and outputs

@ Inputs are just possible values in designated input variables;
@ Outputs are values in output variables:

o these are write-once variables, recording the first write operation;
@ can be read multiple times;

©2007-2013 Paulo Sérgio Almeida Synchronous Network Model

Executions

Synchronous network model Synchronous network systems

State assignment: assignment of a state to each process;
Message assignment: assignment of message/null to each
channel;
Execution: infinite sequence Cy, My, Ny, Ci, Mo, No, Co, . ..

e C; state assignment after round /;

e M; message assignment; messages sent in round i;

o N; message assignment; messages received in round /;

e M; # N; if there is message loss;
Executions e and €’ are indistinguishable to process i, denoted

e~ ¢, if i has the same sequence of states, outgoing and
incoming messages in e and ¢€’;

Executions can also be said to be indistinguishable to process i
up to r rounds;

007-2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Proof methods

@ Invariant assertions:
e property of the system state that is true in every execution, after
every round;
@ can involve the number of completed rounds;
@ can be proven by induction on the number of completed rounds;
@ Simulations:
@ correspondence between algorithm A and B;
e A produces the same input/output behavior as B;
o expressed by an assertion relating states of A and B (when both
are started with same inputs and run with same failure pattern);

'—2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Complexity measures

@ Time complexity:

e number of rounds until output produced or processes halt;
@ Communication complexity:

e total number of (non null) messages sent;

e eventually also number of bits in messages;

@ Time is more important in practice;

007-2013 Paulo Sérgio Almeida Synchronous Network Model

Synchronous network model Synchronous network systems

Randomization

It can be useful to allow random choices;
Model is augmented with random function:

@ rand; is added for each node i;
e randj(s), for state s, is a probability distribution over states;;

Each round starts now by a random choice of new a state;
Executions become Cqy, D1, My, Ny, Cy, Do, Mo, N, Co, . ..

e D, represents state assignment after random choices in round r;
In randomized systems, claims become probabilistic;

'—2013 Paulo Sérgio Almeida Synchronous Network Model

	Synchronous network model
	Synchronous network systems

